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EXECUTIVE SUMMARY 

Reducing traffic congestion and providing better transportation service in the region is one of the 
crucial roles for the Pima Association of Governments. Data-driven transportation planning and 
traffic operation management is not an imaginary goal anymore but a realistic and urgent target. 
For example, the federal FAST Act requires that state DOTs and MPOs develop data-driven 
performance measures using regional big data, and transportation agencies in the U.S. have been 
developing strategies for TSMO to improve the performance of the transportation system. 
Therefore, the goal of this study is to investigate the sources of traffic data and develop a method 
to support PAG’s regional TSMO-related traffic data collection/maintenance and advanced 
modeling. This project will focus on identifying the traffic mobility/reliability performance 
measures from video- and event-based traffic data and crowdsourced data. 

 Most transportation agencies that have implemented TSMO systems relied on fixed traffic 
sensors for collecting traffic performance measures such as delay, arrival-on-green (AoG), and 
split failure, which has a strict requirement on the sensor configuration. However, most traffic 
detection systems originally configured for actuation signal control do not meet the requirement 
for collecting performance measures, because the only function of these traffic detection systems 
is to detect traffic arrival rather than collect traffic data. Even though most existing traffic detection 
configurations do not meet the requirement for collecting performance measures, they are still able 
to collect high-resolution event-based data, which is less informative compared to the standard 
detection configurations. However, these less informative events collected by existing traffic 
detection still have high correlation with traffic arrivals according to our previous project.  

 In addition to high-resolution event-based data, third-party connected-vehicle data (Wejo) 
has become available and has been applied to calculate the traffic performance measures at 
signalized intersections. Wejo data is collected and processed to explore its pertinence in extracting 
the performance measures. Several methods are proposed to calculate the control delay, AoG, and 
split failure without using any additional event-based data. 

The Miovision sensors configured by PCDOT can collect performance measures from 
around 100 signalized intersections. These sensors can provide simple delay, AoG, arrival-on-red 
(AoR), and split failure through the TrafficLink portal. These Miovision-based traffic performance 
measures are collected from 2021 for analysis and can indicate the traffic condition. Also, these 
data serve as the ground-truth data for comparing with the Wejo-based traffic performance 
measures.  

Comparing the Wejo-based performance measures and Miovision-based performance 
measures shows that the sample size of Wejo data significantly impacts the reliability and accuracy 
of Wejo-based performance measures. To control the quality of Wejo-based performance measures, 
QA/QC is conducted to determine the sample size threshold for ensuring a sufficient number of 
vehicle trajectories. 
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The traffic sensors at most intersections in the PAG region cannot provide performance 
measures due to the lack of a traffic data collection module. Event-based data, which is an existing 
data source generated by the default traffic detection module, is explored and utilized to estimate 
performance measures at these intersections without the data collection module. The proposed 
Model-Agnostic Meta-Learning (MAML) method was calibrated and evaluated using ground-
truth data calculated using sufficient Wejo data for estimating delay and AoG. In order to ensure 
the quality of the estimated delay and AoG data, a QA/QC procedure was developed and 
acceptance criteria were decided based on literature review and sample data evaluation. 

Data resource and limitation:  

 Around 100 signalized intersections with Miovision sensors can provide traffic 
performance measures through TrafficLink portal. These data have been downloaded 
through TrafficLink portal, and no API is available currently.  

 Due to a lack of advance detectors in Miovision sensors for left-turn movement, there 
is no AoG data available for the left-turn movement. 

 In the greater Tucson area, there are around 700 signalized intersections managed by 
the MaxView system. The traffic sensors configured at these intersections are currently 
not capable of providing traffic delay and AoG data due to the detector configuration. 
However, these existing sensors are able to provide high-resolution event-based data, 
which is the major data source used for delay and AoG estimation in this project.  

The following conclusions can be drawn from this project: 

 The Wejo data can be used to provide control delay, AoG, and split failure without 
using other data sources. In addition, by combining Wejo data and signal event-based 
data, the red-light running information can also be extracted. 

 According to the correlation analysis, the number of sample vehicles better indicates 
the necessary sample size of Wejo data than does the sample penetration rate. 
Comparing the Wejo-based performance measures and traditional sensor-based 
performance measures shows that the Wejo-based delay and AoG on through 
movements require at least 16 vehicles/hour to reach the maximum correlation 
coefficient.   

 The Wejo-based delay on left-turn movements needs at least 6 vehicles/hour/lane to 
reach the maximum correlation coefficient. The two types of split failure data show a 
weak correlation because of excess zero split failure, which is challenging for 
determining the sample size threshold.  

 By calculating the correlation between Wejo- and Miovision-based reliabilities, the 
delay reliability on through movements calculated using at least 500 vehicles can reach 
the maximum correlation coefficient.  The delay reliability on left-turn movements 
calculated using at least 600 vehicles can reach the maximum correlation coefficient.  
The AoG reliability on through movements calculated using at least 1,000 vehicles can 
reach the maximum correlation coefficient.   
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 153 signalized intersections in the greater Tucson metropolitan area are selected as 
study locations for calibrating and testing the proposed model-agnostic meta-learning 
method, which is an emerging AI method to address the impact of the intersection 
heterogeneity in terms of the traffic pattern and intersection layout on estimation 
accuracy and reliability. The evaluation results show that the through movements with 
advance and presence detectors in the MaxView system have a mean absolute percent 
error (MAPE) of 12%-15% and 15%-22% for control delay estimation, respectively, 
and the MAPE for left-turn movements is 22%-27%. For AoG estimation, MAPE for 
through movement with advance detectors is 13%-30%, and locations with presence 
detectors have a relatively higher error. The locations using the Miovision detection 
system also show a similar performance. The evaluation results indicate the proposed 
method can provide accurate and reliable network-level control delay and AoG 
regardless of the traffic detection system. 

 After aggregating into monthly hourly estimations, the estimation becomes more 
accurate and reliable. The MAPE of delay estimation is 9%-13% for through 
movements and 14%-18% for left-turn movements. The MAPE of AoG estimation is 
7%-24% for through movements. The average monthly hourly AoG estimation for left-
turn movement still has a relatively high error and lower reliability. 

 Since the through movements have accurate performance measure (PM) estimation but 
not left-turn and right-turn movements, it is challenging to obtain the intersection-level 
PM Therefore, it is not recommended to estimate intersection-level using event-based 
data. 

 To understand the regional transportation system reliability, this study considered the 
buffer index of traffic delay, AoR, and split failure by comparing 95th percentile 
measure with the average measure. Buffer index shows a reliable system as close to 0 
and the system would not be reliable as larger than 0.4. The buffer index shows worse 
performance at night and early morning, but the buffer delay index is under 0.2 for the 
daytime including morning and afternoon peaks and buffer AoR index shows similar 
patterns with worse performance at night and early morning but good performance 
under 0.2 in daytime. Buffer split-failure index was also evaluated but this study 
observed the scarcity of split failures in the region, and it is not recommended to 
measure split failure to represent system reliability. 
 

Based on the conclusions above, we recommend the following to PAG regarding the use 
of existing data sources and future work: 
 

 According to the representativeness evaluation results in Chapter 5, Wejo data with 
enough sample size can be used to derive accurate performance measures of control 
delay and AoG. Due to the limitation of sample size in using Wejo data, it is suggested 
to use Wejo data for monthly performance measures calculation in order to maximize 
the data usage and availability.  
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 The Miovision sensors in the greater Tucson area are able to provide valuable and 
reliable delay, AoG, and split failure data. So, it is recommended to consider and 
backup the provided Miovision performance measures. 

 Due to the heterogeneity of intersections, the delay and AoG estimation from the 
proposed meta-learning method using the event-based data is recommended to apply a 
network-level control delay and AoG. However, it is useful to review individual 
intersections with developed performance measures.  

 The developed acceptance criteria are based on the available data and references in this 
study. So, if there is any new crowd-sourced or traffic sensor data available, it would 
be suggested to evaluate the data and adjust the acceptance criteria accordingly.  

 Wejo data has been considered for calculating signalized intersection performance 
measures. However, beyond this project, it would be useful to understand other travel 
behaviors, such as travel purpose identification, parking behavior analysis, and parking 
time calculation.  

 An online data analytics platform would be a useful tool for visualizing and managing 
the estimated network- and intersection-level AoG and delay using event-based data.  

 This project and previous project focused on analyzing and estimating the performance 
measures for motorized traffic. It is also recommended to explore other existing data 
related to other traffic modes in Tucson, such as bike sharing, e-scooter, and transit, to 
obtain the performance measures for multi-modal transportation systems.  

 

During the period of data collection and analysis for this report, Wejo was still considered a viable 
data source.  However, in May 2023 following data collection, Wejo declared bankruptcy and 
ceased operations.  Nevertheless, the analytical approach taken herein is considered sound in that 
it compares reliable crowd-sourced data to in-place, fixed systems.  Results presented include an 
estimation of crowd-sourced (by percentage) data necessary to provide the region with a viable 
option to stationary (e.g. Miovision and Maxview) data collection systems. 

For this study, Wejo data was collected for 8 months (January to April and September to December) 
in 2021, and Miovision and MaxView system data was compared with the collected Wejo data for 
the numerous analyses and calibration. We note that the travel behavior patterns in this period were 
influenced by COVID-19, and specifically that these travel behavior patterns differ significantly 
from patterns both before and after the pandemic period. However, as stated above, the purpose of 
this study was focused on comparing fixed data collection systems to connected vehicle data and 
travel behavior did not influence the results or conclusions of the analyses contained herein. 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

The Federal Highway Administration (FHWA), and Federal Transit Administration (FTA) 
encourage states, MPOs, and local governments to focus on transportation system management 
and operation, or TSMO, as a cost-effective set of strategies to address transportation challenges. 
As the MPO for the Eastern Pima County region of Arizona, the Pima Association of Governments 
(PAG) has developed TSMO strategies, which aim to improve the traffic operations of and 
optimize the safety, efficiency, and reliability of the existing transportation system. Performance 
measures enable PAG to track progress and quantify goals for TSMO strategies.  

Getting the region-wide TSMO-related performance measures using multiple sources of data is 
challenging for most agencies, including PAG. Member jurisdictions are currently operating and 
maintaining various traffic sensors to collect data in the PAG region, including Max View and 
Miovision systems. Based on the previous project “Comparative Analysis and Integration of 
Region-Wide Traffic Data” exploring traffic sensor-based data, using these data to estimate 
TSMO-related performance measures at signalized intersections should be feasible and cost-
effective. In addition to the traffic sensor data sources, third-party probe vehicle data can provide 
vehicle trajectory data using connected vehicle technologies and navigation software. The 
trajectory data has proven capable to calculate multiple traffic performance measures including 
intersection delay, level of service (LOS), arrival on green (AoG), and split failure. The sensor-
based traffic data sources and third-party data sources are available within PAG and can be used 
to obtain TSMO-related performance measures. 

The goal of this project is to investigate two sources of traffic data and develop a method to support 
PAG’s regional TSMO-related traffic data collection and advanced modeling. The performance 
measures will also be used in long-term planning, and the developed methodology guidelines will 
be efficiently applied to transportation planning and modeling and other regional traffic studies. 

1.2 ORGANZATION OF REPORT 

The organization of the report is as follows. In Chapter 2, we summarize the TSMO-related traffic 
performance measure estimation methods, the application of the GPS data, and TSMO based on 
the literature review findings. In Chapter 3, we explore the third-party probe vehicle data in terms 
of data coverage and reliability, provide raw data cleaning and processing guidance, and develop 
traffic performance measure estimation methods using the processed trajectory data. Chapter 4 
calculates and compares analyzed mobility and reliability performance measures extracted from 
the Wejo data and the sensor-based data. The accuracy of the mobility performance measures 
extracted from the third-party probe vehicle data may vary with the penetration rate. Chapter 5 
evaluates the accuracy of the mobility performance measures under different penetration rates 
using other trajectory data collected by traffic sensors or ground-truth mobility data collected 
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manually. Chapter 6 develops a method to estimate traffic performance measures using the 
sensor-based data from Max View and Miovision systems. To control the output data quality from 
the proposed estimation methods, acceptance criteria are developed with multiple sources of 
sample data based on the findings in Chapter 7. Based on the methods developed in previous 
tasks, we estimate the region-wide traffic mobility and reliability performance measures and 
summarize all results and findings in Chapter 8. 

Table 1-1. Project tasks and schedule 
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CHAPTER 2: LITERATURE REVIEW 

This project aims to investigate the sources of traffic data and develop a method and performance 
measures to support the PAG’s regional TSMO-related traffic data collection/maintenance and 
advanced modeling. This project focuses on extracting the traffic performance measures from 
video-based and event-based traffic data and crowdsourced data. As a final output, the project 
develops cost-effective regional TSMO-related performance measures and enhances the QA/QC 
procedure and data integration based on the previous project “Comparative Analysis and 
Integration of Region-Wide Traffic Data,” which explored the sources of regional traffic volume 
data and developed a model to estimate turning movement counts using event-based data. 

This section summarizes the existing methods for traffic performance measure estimation, 
applications of GPS data in the transportation field, and major data sources and applications used 
in state TSMO programs. 

2.1 TRAFFIC PERFORMANCE MEASURE ESTIMATION 

Traffic performance measures such as traffic volumes and travel times are important indicators 
that quantify traffic conditions in order to monitor traffic and improve signal timing plans. 
However, these important performance measures are currently challenging to collect in real time 
for most transportation agencies. One of the major challenges is that the existing sensors currently 
used by most agencies are out of date and are unable to collect traffic performance measures. To 
obtain these performance measures without installing new sensors, some studies have been 
conducted to estimate performance measures from existing data sources, which can save a large 
amount of time and money. 

Intersection volume data is a critical input for most traffic studies such as signal timing 
optimization. The traditional volume data collection methods using manual counts and intelligent 
sensors are time-consuming and costly (Li et al., 2019). Therefore, some studies have used existing 
data sources to estimate intersection volume. For example, GPS data has become more widely 
available and has been used to estimate volume. (Wang et al., 2019) proposed a framework that 
combines shockwave analysis and Bayesian networks to estimate intersection volume using 
trajectory data, with a mean absolute percentage error (MAPE) of 15%. In addition, (Zheng and 
Liu, 2017) and (Zhao et al., 2019) used GPS data collected from navigation apps to estimate 
through movement and left-turn volume at signalized intersections, and the results show that the 
model accuracy decreases as the penetration rate decreases. Also, it is common for only a limited 
number of sensors to be installed at sample locations rather than network-wide due to the high cost. 
Some studies (Sekuła et al., 2018; Zhang et al., 2020) have used this limited volume data, collected 
from only a sample of all segments in the road network, in conjunction with crowdsourced data, 
that has wide coverage, to estimate network flow.  

Delay and queue length are also important indicators of traffic conditions. (Bagdatli and Dokuz, 
2021) used the data collected by camera sensors and controllers along with multiple machine 
learning methods to estimate intersection control delay. The evaluation results show that XGBoost 
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yields the highest accuracy, with a mean absolute error (MAE) of 2.8 seconds/vehicle. And 
machine learning-based methods are also commonly applied to estimate queue length using 
existing data sources such as GPS data and license plates (Liu et al., 2022; Zhan et al., 2015). 
Shockwave-based methods are also used for queue length estimation (An et al., 2017; Hao et al., 
2014; (Jeff) Ban et al., 2011; Liu et al., 2009). In addition to intersection-level performance 
measures, corridor-level performance measures such as speeds and travel times are used for traffic 
studies, though they are challenging to collect. Therefore, various data sources such as loop 
detector data (Xiao et al., 2018), radar detector data (Ding et al., 2019), and GPS data (Bahuleyan 
and Vanajakshi, 2017; Wang et al., 2018) are leveraged to estimate speeds and travel times. In 
addition, some products on the market, such as Miovision TrafficLink (Miovision, 2022a), CATT 
Lab RITIS (CATT Lab, 2022), and  INRIX Signal Analytics (INRIX, 2021), can provide various 
traffic performance measures, which are summarized in Table 2-1.  

Table 2-1. Performance Measures Summary from Miovision TrafficLink, CATT Lab RITIS, and 
INRIX Signal Analytics 

 
Performance 

Measures 
Interpretation 

Data 
Sources 

Resolution 

Miovision 
TrafficLink  

Simple Delay 

The time between stop-
bar detector actuation 
during the red phase and 
when the phase turns 
green 

Video-
based 
sensors 

15 minutes 

Travel Time 
Travel time between two 
intersections with 
Miovision sensors 

Vehicle-based 

Arrivals on Red 
The number of vehicles 
triggering advance 
detectors during red 

5 minutes 

Green Allocation 
Percentage of the green 
time allocated among the 
phases 

15 minutes 

Occupancy Ratio 

The percentage of time 
that the stop-bar detector 
is occupied during red, 
green, and the first 5 
seconds of red 

Cycle-based 

Pedestrian 
Compliance 

Pedestrian red-light 
runner Event-based 
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Performance 

Measures 
Interpretation 

Data 
Sources 

Resolution 

Pedestrian Delay 

The time between 
pedestrian detector 
actuation during the 
Don't Walk phase and 
when the phase turns to 
Walk 

Cycle-based, 

Binned into 
15-min 
interval 

Red-Light Runner 
Number of red-light 
runners using stop-bar 
detections 

Event-based 

Split Failure 

When both the Green 
Occupancy Ratio and the 
first 5 seconds of Red 
Occupancy Ratio are 
high (>80%) 

Cycle-based 

Split Trend 
Categories of split 
failure 15 minutes 

CATT Lab 
RITIS 

Speed (mph) 
Average speed in the 
specified interval 

HERE; 

INRIX; 
NPMRDS; 

TomTom 

1 minute, 

5 minutes, 

10 minutes, 

15 minutes, 

1 hour, 

Day of week 

Congestion (%) 

The percentage of 
vehicle miles traveled 
(VMT) under congested 
conditions in the 
specified interval 

Buffer time 
(minutes) 

The extra travel time that 
travelers must allow to 
arrive at a destination by 
the intended time on 
95% of trips 

Buffer index 
The ratio of the buffer 
time to the average travel 
time 

Planning time 
(minutes) 

The total travel time that 
travelers must allow to 
arrive at a destination by 
the intended time on 
95% of trips 
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Performance 

Measures 
Interpretation 

Data 
Sources 

Resolution 

Planning time index 

The ratio of the 95th 
percentile travel time to 
the uncongested (free 
flow) travel time 

Travel time 
(minutes) 

The time spent travelling 

Travel time index 
The ratio of the average 
travel time to the free-
flow travel time 

INRIX 
Signal 
Analytics  

 

Control delay 

The difference between 
the travel time a vehicle 
reports to traverse a 
movement and the 
reference travel time 

INRIX trip 
data; 
vehicle 
GPS 
waypoint 
data 

Real-time (1-
minute) 

 

Level of service 

A qualitative measure 
describing operational 
conditions within a 
traffic stream, based on 
control delay 

Arrival on green 

The percentage of 
vehicles that traversed a 
movement 

without stopping 

Approach speed 

The highest speed 
reported by a vehicle 
within the 150-meter 
approach zone 

Vehicle count 

The total number of 
sampled vehicles in the 
database for a specified 
movement and time 
period 
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Performance 

Measures 
Interpretation 

Data 
Sources 

Resolution 

Stopped vehicle 
count 

The number of vehicles 
in a vehicle count that 
stopped at least once in 
the approach zone of an 
intersection (a vehicle 
has “stopped” if it 
reported a speed at or 
below 10 kph/6 mph) 

Split failures 

The number of 
occurrences when a 
green light fails to meet 
vehicle volume demand, 
resulting in a vehicle 
stopping more than once 
at a traffic light 

2.2 GPS DATA APPLICATION 

According to the literature review of traffic performance measure estimation, most studies have 
used GPS data collected from connected vehicles and smart phone apps. This GPS data source has 
been attracting an increasing amount of attention and has been widely used in the transportation 
field. Traditionally, engineers or volunteers had to personally drive vehicles multiple times on 
routes through the study locations on the desired days at the desired times to collect sample GPS 
data. This sample GPS data was then used to evaluate traffic performance changes due to any new 
facilities and policies such as the installation of adaptive signal control (Hunter et al., 2012; 
Khattak et al., 2019; Tian et al., 2011).  But this sample GPS data can only cover limited time 
periods and locations, and the collection process is also time-consuming.  

Recently, some third-party companies have begun to provide 24/7 GPS data on a network level. 
For example, Wejo can provide connected vehicle trajectory data of individual vehicle waypoints 
with a 3-second interval in most cities. This third-party data has a penetration rate of around 5% 
on U.S. roads (Hunter et al., 2021). Due to the wide coverage and accessibility of this third-party 
data, most studies have used this data instead of traditionally collected sample GPS data to evaluate 
traffic performance. Wejo data has been used to calculate split failure, travel time, hard acceleration, 
control delay, speed, level of service, and stop delay (E. Saldivar-Carranza et al., 2021a) to (1) 
evaluate the impact of construction work zones (Desai et al., 2021); (2) evaluate changes to left-
turn phasing (E. D. Saldivar-Carranza et al., 2021b); (3) evaluate the impact of speed signs 
(Mathew et al., 2021); (4) analyze roundabout performance (E. Saldivar-Carranza et al., 2021b); 
(5) assess diverging diamond interchanges (E. D. Saldivar-Carranza et al., 2021a). Because this 
trajectory data is only collected from a sample of all vehicles and not from all vehicles, some 
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studies used this sample data to estimate and predict traffic volume (Abdelraouf et al., 2022; 
Shoman et al., 2022), which enhances the functionality of Wejo data in deriving performance 
measures. 

Even though third-party GPS data has been widely used to estimate performance measures, the 
accuracy of these derived performance measures has not been evaluated since the accuracy could 
vary with the penetration rate. Therefore, the relationship between the penetration rate and the 
accuracy of these derived performance measures needs to be investigated before using these 
measures for any traffic study. 

2.3 APPLICATIONS OF TRANSPORTATION SYSTEMS MANAGEMENT AND 
OPERATIONS  

Transportation system management and operations (TSMO) provides public agencies with a 
growing toolbox to address traffic congestion issues, traffic safety, system performance, and 
reliability and support long-term goals for the transportation system. TSMO is “an integrated set 
of strategies to optimize the performance of existing infrastructure through the implementation of 
multimodal and intermodal, cross-jurisdictional systems, services, and projects designed to 
preserve capacity and improve security, safety, and reliability of the transportation system” (FHWA, 
2020). Some example TSMO strategies include (FHWA, 2020): Work Zone Management, Traffic 
Incident Management, Special Event Management, Road Weather Management, Transit 
Management, Freight Management, Traffic Signal Coordination, Traveler Information, Ramp 
Management, Congestion Pricing, Active Transportation and Demand Management, Integrated 
Corridor Management, Access Management, Improved Bicycle and Pedestrian Crossings, 
Connected and Automated Vehicle Deployment, Mobility on Demand. To make these strategies 
more efficient, effective, and robust, multiple data sources collected from a regional area are 
required to support the TSMO program. We summarized TSMO applications and the major data 
sources used for mobility and safety performance measures in different states in Table 2-2.  

Table 2-2. Applications and Major Data Sources for TSMO Programs 

State DOT Major Data Sources 

Arizona DOT (Kimley Horn, 
2017) 

Crash Reports; Loop Detectors; Regional Archive Data System 
(RADS); Highway Condition Reporting System; Weather 

Florida DOT  (FDOT, 2017) Probe Vehicle Data; Traffic Detectors; Crash Reports; 
SunGuide Event Data; RITIS 

Iowa DOT (Lakeside 
Engineers, 2016) 

Wavetronix Detectors; INRIX; TransSuite; Waze; State Crash 
Records; Iowa DOT Motor Vehicle Division records; Weather 

Minnesota DOT (MnDOT, 
2019) 

CAV data; Weather; Waze; INRIX; HERE; Google 

Nevada DOT (NDOT, 2020) State Crash Records; INRIX; Waze; Google; American 
Community Survey; VMT; Event-based Data; Waycare 
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State DOT Major Data Sources 

Oregon DOT  (ODOT, 2021) RITIS/INRIX; Event-based Data; Detector Data; Oregon State 
Police; Fire and Emergency Responders; 911 Emergency 
Dispatch; Tow Companies 

Tennessee DOT (Cambridge 
Systematics, 2022) 

INRIX; RITIS; Radar; Waze; GPS data; CAV 
 TIM Reports; FHWA Performance Reports 

Ohio DOT (Gannett Felming 
and BPS, 2017) 

ATMS data; Crash Records; HERE 

Artificial intelligence (AI) and machine learning processing methods have been widely used to 
advance TSMO because AI has the capacity to process multiple-sourced, large-scale, real-time 
data to model system behaviors, predict traffic conditions, and evaluate system performance. The 
use of AI technology for TSMO applications by several state DOTs has been reviewed and 
summarized in Table 2-3. The results of these applications show that AI methods can improve 
traffic safety and reduce the traffic staff workload. Some researchers also studied how to use AI 
technology to advance TSMO strategies, as summarized in Table 2-4. AI methods have been used 
for different TSMO applications, including management of different traffic modes such as 
connected vehicles, freight, transit, and pedestrians, and different traffic studies such as traffic 
safety and traffic signal coordination. 
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Table 2-3. Example Applications of AI Technologies for TSMO Applications 

Agencies 
TSMO 

Applications 
AI method Description Benefits 

Nevada DOT 
and Florida DOT 
(Gettman, 2019) 

Traffic 
Incident 
Management 

Neural 
Networks 

Combine information 
from a variety of 
sources to detect and 
report suspected 
incidents. 

Reduced the 
incidence detection 
time by 12 minutes 
and reduced crashes 
by 17% 

Washington 
DOT (Meldrum 
and Taylor, 
2000) 

Ramp 
Management 

Fuzzy 
Logic 

Calculate a metering 
rate. 

Improve the 
mainline efficiency 

Delaware DOT 
(DelDOT, 2022) 

Traffic 
Incident and 
Congestion 
Management 

Neural 
Networks 

Predict traffic, detect 
incidents, 
automatically 
disseminate traveler 
information. 

Reduce the operator 
workload 

Iowa DOT 
(Stolle, 2018) 

Road Weather 
Management 

Decision 
tree 

Predict winter road 
conditions. 

Field maintenance 
staff plan efficiently 
for winter road 
condition changes 

Iowa DOT (Liu 
et al., 2021) 

Work Zone 
Management 

Artificial 
Neural 
Network 

Predict work zones’ 
traffic impacts. 

Support work zone 
planning and 
management 

Washington 
State DOT 
(Murthy and 
Yang, 2021) 

Freight 
Management 

Recurrent 
Neural 
Network 

Predict parking 
occupancy. 

Improve utilization 
of parking facilities 

 

Table 2-4. Example Research of AI Technologies for TSMO Applications 

TSMO 
Applications 

AI Technologies Research Area Findings 

Incident 
management 
(Chowdhury et al., 
2006) 

Support vector 
regression (SVR) 
and case-based 
reasoning (CBR) 

Assess the impact of 
diversion strategies 
in response to 
incidents. 

SVR performance is 
superior to CBR 
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TSMO 
Applications 

AI Technologies Research Area Findings 

Emergency 
management 
(Matveev et al., 
2020) 

Artificial neural 
network (ANN) 

Assess the scale of 
an incident or 
emergency. 

ANN identifies standard 
incidents similar to the 
current incident. 

Freight management 
(Mahmud et al., 
2020) 

K-means clustering 
Identify truck 
parking patterns. 

Overnight and longer-
duration parking was 
associated with facilities 
that had fewer amenities. 

Connected and 
Autonomous 
vehicles (CAVs) 
(Ren et al., 2020) 

Reinforcement 
learning (RL) 

Adjust longitudinal 
position to find a safe 
gap to merge in the 
open lane at work 
zones. 

The RL-based model 
outperforms 
conventional merge 
control strategies 
including late and early 
merges. 

Freeway 
management (Sadek 
et al., 1998) 

Stochastic search 
algorithm and CBR 

Identify routing 
strategies to 
optimize highway 
network 
performance. 

AI algorithms allow real-
time information 
processing, experience 
learning, and deal with 
missing and incomplete 
data. 

Transit management 
(Wai and Zhou, 
2020) 

eXtreme Gradient 
Boosting (XGBoost) 

Predict bus departure 
times. 

AI handles real transit 
agency challenges 
including missing 
models, timing points, 
and partially traveled 
segments. 

Traffic signal 
coordination (Choy 
et al., 2003) 

Reinforcement 
learning, fuzzy logic, 
and neural network 

Recommend an 
appropriate signal 
policy at the end of 
each phase. 

The AI-based system 
reduced delays and total 
vehicle stoppage time 
more than fixed-time 
traffic signal control. 

Pedestrian and 
bicycle network (Lu 
et al., 2011) 

Fuzzy logic 

Determine dynamic 
pedestrian clearance 
interval while 
fulfilling 
multifaceted vehicle 
needs at 
intersections. 

The fuzzy logic control 
system outperforms the 
NEMA control. 
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The integration of connected vehicle (CV) technologies and machine learning (ML) into 
transportation systems management and operations (TSMO) projects has been a significant 
development in recent years. As shown in Table 2-5, multiple transportation agencies have created 
a CV test-bed environment with pilot field locations to implement a real-world TSMO solution. 
The CV technology has been used for several TSMO strategies such as transit management, traffic 
safety management, and traffic signal performance. In addition to using different types of 
technologies to advance TSMO, other measures to improve TSMO include integrating ITS with 
TSMO and expanding TSMO capability for multimodal transportation. Four state DOTs with 
mature systems and technology programs within their TSMO programs are summarized in Table 
2-5. These agencies provide valuable experience in using technology to enhance transportation 
network efficiencies and operations. 

Table 2-5. Case Studies for Advancing TSMO  

Projects/Cases Practices Implementation and Experience 

Connected Streetcar 
Project in Portland 
(NITC, 2018) 

Take CV 
technology for a 
Test Run on 
Portland Streetcar. 

Deploy the MMITSS on the Portland 
Streetcar and at four intersections along the 
study corridor. 

New Jersey Connected 
Technology Integration 
and Implementation 
(New Jersey Department 
of Transportation, 2022) 

Deploy and 
integrate CV 
equipment into the 
existing NJDOT 
ITS architecture. 

Deploy CV technology at five intersections 
with SCATS-enabled traffic signals. 

Gainesville Signal Phase 
and Timing Trapezium 
Project (Banerjee et al., 
2021) 

Deploy Roadside 
and Onboard CV 
technologies on four 
roads to improve 
travel time 
reliability and 
safety. 

• Deploy 27 RSUs and 71 OBUs on a 
variety of vehicles including emergency 
vehicles, transit buses, UF fleet, the City 
of Gainesville vehicles, and research 
vehicles. 

• Deploy a smartphone-based alert 
application to enhance bicyclist and 
pedestrian safety. 



 

36 

 

Projects/Cases Practices Implementation and Experience 

Manatee County’s 
Expansion of TSMO 
Capabilities to Enhance 
Multimodal (Manatee 
County, 2022) 

Expand TSMO 
capabilities on 
multimodal 
transportation 
systems. 

• Deploy ATSMPs at 75 signalized 
intersections. 

• Implement ASCT. 
• Disseminate traveler information using 

crowd-sourced platforms and websites. 
• Include RRFBs and LPI as part of the 

standard design increasing safety for 
pedestrians. 

Four state DOTs with 
mature systems and 
technology programs 
within their TSMO 
programs (Atkins et al., 
2019) 

Make full use of the 
systems and 
technology 
component of 
TSMO. 

• Oregon DOT: implement a statewide 
ITS architecture and embed the ITS 
architecture and planning efforts within 
broader regional planning efforts. 

• Georgia DOT: a Qualified Product List 
containing all the ITS equipment. 

• Ohio DOT: Move ITS network routing 
and switching from OIT to TSMO 
making coordination and communication 
easier. 

• Utah DOT:  1) Built PPP with private 
telecommunications companies to reduce 
the cost of fiber construction for UDOT; 
2) Upgrade signals for ATMPS and 
include all traffic signals on the same 
communication network to enable UDOT 
to make decisions on a large scale. 
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CHAPTER 3: THIRD-PARTY PROBE VEHICLE DATA 
EXPLORATION  

Third-party probe vehicle data (i.e., Wejo data) can provide vehicle trajectory data using connected 
vehicle technologies and navigation software. This chapter focuses on cleaning and processing the 
raw GPS data. Because the data can provide an individual vehicle’s trajectory, individual driving 
behaviors can be mined and extracted from these trajectories. These individual driving behaviors 
can be used to indicate traffic conditions and performance. The feasibility of extracting potential 
traffic performance measures from the third-party probe vehicle data is investigated in this section.  

3.1 DATA CLEANING AND PROCESSING 

The raw Wejo GPS data contains all GPS points both on and off the road network, including the 
parameters of latitude, longitude, speed, moving direction (angle), timestamp, and trip ID. 
However, the raw data does not contain information about the intersections through which the 
vehicle passed nor does it contain the vehicle’s direction (EB, WB, NB, or SB) or movement 
(left/right turn or through) at the intersection, which are necessary to calculate intersection-level 
performance measures. We first filter all on-road GPS points with a GIS map of most arterials in 
the Greater Tucson area to select only those points within a 50 m buffer of the arterials. As shown 
in Figure 3-1(a), the adjacent intersections of the target intersection are used to filter vehicle trips 
that passed through or near the target intersection from all trips. These filtered GPS points are then 
further processed to add more information, and the processing procedure is shown in Figure 3-
1(b).  

 Generate new trips: After filtering the GPS points using adjacent intersections, a few 
original trips such as back-and-forth trips with the same trip ID may be separated into 
multiple sub-trips in the study area. For example, if one trip is EB through movement, when 
this trip makes a U-turn at the next intersection, this trip then becomes WB through. This 
trip can be used to indicate EB and WB traffic conditions, so we split it into two trips. 
Specifically, when two consecutive GPS points in an original trip after trimming 
trajectories based on adjacent intersections have a time gap longer than 10 seconds, these 
two points are classified into two sub-trips with new trip IDs assigned.  

 Identify direction: For most standard intersections like Figure 1(a), the directions in 
which vehicles were driving can be identified based on the “direction” parameter in the 
data.  

o NB: 315 ° <= direction < 360 ° or 0 ° <= direction < 45 ° 
o EB: 45 ° <= direction < 135 ° 
o SB: 135 ° <= direction < 225 ° 
o WB: 225 ° <= direction < 315 ° 
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There are some skewed intersections where the vehicle directions through the intersection 
cannot be identified using the method above. For these intersections, we first manually 
label the road angles using Google Maps and then identify the vehicle directions.  

 Identify turning movement: The turning movements of vehicles at intersections can be 
determined from the trip directions identified in the previous step. 

(a) 

 

 

(c)  

(b) 

Figure 3-1. (a) Raw GPS points at one sample intersection; (b) on-road GPS data filter; (c) data 
processing procedure 

3.2 TRAFFIC DELAY  

3.2.1 Calculation 

After cleaning and processing the raw probe vehicle data, it is used to calculate the traffic delay. 
Control delay consisting of deceleration delay, stop delay, and acceleration delay is commonly 
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used to indicate traffic performance at signalized intersections (Ko et al., 2008; E. Saldivar-
Carranza et al., 2021a). Most studies applied probe vehicle data for delay calculation to compute 
the time difference between actual travel time and free-flow trajectory’s travel time as the control 
delay, where the free-flow speed is assumed to be the posted speed limit. Even though the free-
flow speed is correlated with the posted speed limit, these two speeds cannot be regarded as the 
same because drivers might drive slightly under or over the posted speed limit in the free-flow 
condition (Deardoff et al., 2011; Silvano et al., 2020). To compute the actual free-flow speed, the 
speeds of vehicles passing through an intersection without stops during nighttime (10 p.m. – 3 a.m., 
hours that typically have low traffic flow) are averaged. This average speed is then considered the 
free-flow speed for each movement at that intersection because these vehicles are not impacted by 
signal control and queues.  

3.2.2 Results and Analysis 

We calculate the hourly delay as the average of all vehicles’ delay that pass through the target 
intersection within one hour, and the number of sample probe vehicles is also obtained. Figure 3-
2 shows hourly delay and number of sample probe vehicles for the through movement at Ina Rd. 
and La Cañada Dr. for three days in Jan. 2021. These three days of data consistently show that 
nighttime has very few and sometimes even zero probe vehicles, and so the delay cannot be 
calculated for many nighttime hours. During the daytime, more probe vehicles pass through the 
target intersection, where the number of sample probe vehicles is as high as 30 vehicles/hour for 
some directions during some peak hours. The hourly delay is slightly longer during peak hours 
than during other daytime hours, but overall the delay is similar among the various daytime hours, 
with most being shorter than 50 seconds. 
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Figure 3-2. Hourly delay and number of sample probe vehicles at Ina Rd. & La Cañada Dr. 

In addition to the through movement delay, the probe vehicle data can be used to calculate the left-
turn and right-turn delay. Figure 3-3 shows the average over the month of Jan. 2021 for the through, 
left-turn, and right-turn hourly delay at Ina Rd. and La Cañada Dr. These three movements have a 
similar hourly delay trend, with shorter delay during nighttime, longer delay during daytime, and 
peaks in the early morning and late afternoon. Also, left-turn vehicles typically experience the 
longest delay at the intersection and right-turn vehicles the shortest, which corresponds to the 
typical perceptions. 
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Figure 3-3. Average hourly control delay by movement at Ina Rd. & La Cañada Dr. during Jan. 
2021. 

64 signalized intersections in the PAG region were selected, and the control delay at each 
intersection during January, February, and March of 2021 is calculated. Figure 3-4 shows the 
spatial-temporal distribution of average delay for these months at these intersections, where the 
radius of the circle is the total of the average through, left-turn, and right-turn delay. The delay at 
most intersections at midnight is shorter than 40 sec/veh due to the light traffic. During the daytime, 
the total delay at most intersections becomes significant. In most situations, left-turn vehicles 
experience longer delay than through and right-turn vehicles, and often the left-turn delay is even 
longer than the sum of the through and right-turn delay. 
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(a) delay distribution at 1a.m.                                                                   (b) delay distribution at 8 a.m. 
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(c) delay distribution at 12 p.m.                                                                   (d) delay distribution at 5 p.m. 

Figure 3-4. Spatial-temporal distribution of delay 
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3.3  LEVEL-OF-SERVICE 

3.3.1 Definition 

According to the 2016 Highway Capacity Manual (Transportation Research Board, 2016), the 
level of service (LOS) at a signalized intersection is defined in terms of the average vehicle delay 
of all movements (through, right-turn, and left-turn) that occur at the intersection. The definition 
of the LOS criteria is summarized in Table 3-1. 

Table 3-1.  Signalized intersection LOS Criteria  

LOS Average Delay (Sec/veh) Description 

A ≤10 Free flow 

B 10 - 20 Stable flow (slight delays) 

C 20 - 35 Stable flow (acceptable delays) 

D 35 - 55 
Approaching unstable flow (tolerable delay, occasionally 
wait through more than one signal cycle before 
proceeding) 

E 55 - 80 Unstable flow (intolerable delay) 

F >80 Forced flow (jammed) 

  Source: (Transportation Research Board, 2016) 

3.3.2 Results and Analysis 

Figure 3-5 shows the intersection LOS distribution by hour, based on the delay data on March 17, 
2021. The LOS at most intersections during most hours is A. At some intersections, the LOS 
decreases to B or C after 6 a.m. From 11 a.m. – 5 p.m., the number of intersections with LOS A, 
the number with LOS B, and the number with LOS C are similar. During every hour, there are few, 
if any, intersections with LOS of D or E.  
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Figure 3-5. Intersection LOS distribution by hour on March 17, 2021 

3.4 ARRIVAL-ON-GREEN/ARRIVAL-ON-RED  

3.4.1 Calculation 

Arrival on green (AoG) is the percentage of vehicles arriving at an intersection during the green 
phase and is used to indicate the signal coordination progression. Advance detectors are typically 
configured to count the number of vehicles triggering the detector during the green phase to 
calculate the AoG (Brennan et al., 2011; Day et al., 2014, 2008).  

The distance of advance detectors from the intersection varies among intersections and approaches, 
and so the AoG percentages calculated from counts collected using advance detectors may lack 
the consistency needed to accurately compare the signal performance at different locations. In 
order to ensure consistency for performance evaluation, we applied the method proposed by (E. 
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Saldivar-Carranza et al., 2021a), which calculates AoG using probe vehicle data rather than 
detector data. The AoG is calculated as the ratio of the number of sample vehicles passing through 
an intersection without stopping to the total number of sample vehicles passing through the 
intersection during a defined time interval. The stopping status is identified as when a vehicle has 
a speed value lower than 1 mph before passing through an intersection.  

3.4.2 Results and Analysis 

The Arrival-on-Green (AoG) and Arrival-on-Red (AoR) for the 64 selected intersections during 
January, February, and March of 2021 are calculated and analyzed in this section. Figure 3-6 
shows a heatmap created from the average AoG ratio for each intersection and hour of the day. 
The AoG of 0 means all vehicles arrive during the red time, and the AoG of 100% means all 
vehicles arrive during the green time. Most intersections have a high AoG ratio (over 80%) during 
the nighttime, indicating free flow traffic during these hours, which is consistent with the delay 
results. Also consistent with the delay analysis, the AoG decreases after 5 a.m. and has a relatively 
low value during the daytime. In addition, major arterials such as La Cholla Blvd. and Ina Rd. 
typically have a lower AoG, indicating that these arterials are more likely to have congestion, 
which could be due to inefficient signal timing, heavy traffic, or both. Figure 3-7 shows the 
average spatial-temporal distribution of AoG and AoR ratios. All intersections on the same arterial 
have similar AoG and AoR, which is likely because most or all signals on a major arterial have 
similar traffic conditions, and often the same signal timing plan is used to coordinate most or all 
signals on the corridor.  
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Figure 3-6. Heatmap of average AoG ratio by intersection and hour 
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(a) AoG and AoR distribution at 1a.m.                                                     (b) AoG and AoR distribution at 8 a.m. 
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(c) AoG and AoR distribution at 12 p.m.                                                     (d) AoG and AoR distribution at 5 p.m. 

Figure 3-7. Spatial-temporal distribution of AoG and AoR
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3.5 SPLIT FAILURE  

3.5.1 Calculation 

Split failure is a performance measure to indicate when the traffic demand cannot be served within 
one cycle, and it is calculated using the green occupancy ratio (GOR) and red occupancy ratio 
(ROR) collected by presence detectors (Day et al., 2014, 2008).  

We use the method proposed by (E. Saldivar-Carranza et al., 2021a). We first identify all sample 
vehicles that stop more than once before passing through an intersection during a defined time 
interval. These are the vehicles that are not served within one cycle. Then this number of sample 
vehicles that stop more than once is calculated as a percentage of the total number of sample 
vehicles that pass through that intersection during the time interval, and that percentage is the split 
failure ratio. 

3.5.2 Results and Analysis 

Figure 3-8 shows the average intersection-level signal split failure ratio during January, February, 
and March of 2021 for each intersection and hour of the day. Most intersections have a very low 
split failure ratio (under 2.5%), indicating that current signal timing plans at most intersections can 
serve most of the demand within one cycle with only a few vehicles that must wait for more than 
one cycle. However, the intersection at Mission Rd. and Valencia Rd. has a much higher split 
failure ratio (10%) from 4 – 5 p.m. This high ratio could be due to the inefficient signal plan, heavy 
traffic demand, or both. 
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Figure 3-8. Split failure ratio by intersection and hour 
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3.6 RED-LIGHT RUNNING 

3.6.1 Calculation 

Using only probe vehicle data to identify red-light running is very challenging without signal 
events. We also use event-based signal data collected by the Miovision system to determine the 
signal status when a vehicle passes through an intersection to identify whether the vehicle ran a 
red light.  

3.6.2 Results and Analysis 

Figure 3-9 shows the average red-light running frequency of the through vehicles at all study 
locations. The frequency ranges from 0 to 6 vehicles per hour. During the nighttime, all 
intersections have very few, if any at all, red-light runners. During the daytime, an intersection 
typically has 1 to 3 red-light runners per hour. Friday has more red-light runners (5 to 6 per hour) 
than other days, especially during the p.m. peak hours.  

 

Figure 3-9. Average red-light running frequency of through vehicles 
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To further investigate the red-light running behaviors, probe vehicle trajectories at Ajo Way & Palo 
Verde Rd. and the associated red signal timing are visualized in Figure 3-9. The red bars in Figure 
3-10 represent the time for which the signal was red, and the black lines are vehicle trajectories. 
The results show that most red-light running occurred at the beginning of the red signal phase, 
which is likely during the clearance interval. Two trajectories, 679.11 and 501.18, apparently ran 
the red light after the red light starts for a moment, reflecting the aggressive driving. These two 
trajectories have a long stop at the intersection, so a long stop delay at the intersection could cause 
aggressive driving behaviors.  
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Figure 3-10. Red-light running trajectories at Ajo Way & Palo Verde Rd. 
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CHAPTER 4: MOBILITY/RELIABILITY PERFORMANCE 
DATA COLLECTION AND ANALYSIS  

According to the previous chapter’s results, the third-party probe vehicle data provided by Wejo 
can be used to calculate multiple traffic performance measures including intersection delay, level 
of service (LOS), arrival on green (AoG), and split failure. In addition to mobility and reliability 
performance measures extracted from Wejo data, up-to-date traffic sensors installed at signalized 
intersections in the PAG region can also provide traffic performance measures. This chapter 
compares these sensor-based and Wejo-based performance measures to understand the capabilities, 
coverage, and differences.  

4.1 SENSOR-BASED PERFORMANCE DATA COLLECTION AND ANALYSIS 

In the PAG region, traffic sensors from various manufacturers, including Miovision, Autoscope, 
and Iteris, have been installed at many signalized intersections for traffic detection and signal 
control. However, most Autoscope 
and Iteris sensors cannot provide 
reliable and accurate mobility 
performance data due to issues such 
as detector layout configuration, 
cost, communication, and 
capability. As of 2022, Miovision 
sensors are the primary existing 
sensors that can collect 24/7 
Automated Traffic Signal 
Performance Measures (ATSPM) 
data in the PAG region due to 
Miovision’s easy to use API, 
advanced AI detection technology, 
and cloud server. These Miovision 
sensors are managed by two 
agencies, the Town of Marana and 
Pima County Department of 
Transportation (PCDOT), and their 
locations are shown in Figure 4-1. 
Miovision provides a web interface 
called the TrafficLink portal 
(https://trafficlink.miovision.com/) 
for users to check and download multiple signal performance measures and network metrics, and 

Figure 4-1. Miovision Sensor Locations 
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all the available measures are shown in Figure 4-2. All signal performance measures provided by 
the TrafficLink portal are defined and calculated according to event-based data. Therefore, to save 
time and effort in data collection, we first automatically collect event-based data through the API 
and then calculate arrival-on-green and split failure from this event data but download simple delay 
from the TrafficLink portal. 

 

Figure 4-2. Miovision signal performance measures and network metrics 

4.1.1 Simple Delay 

The delay provided by Miovison is the simple stop delay rather than the control delay. The simple 
stop delay is defined as the time difference between stop-bar detector actuation during the red 
phase and the start of the next green phase (Miovision, 2022a). While the control delay includes 
the acceleration delay, deceleration delay, and the delay of vehicles in the queue outside the 
detection zone, the simple delay misses all these other components of the control delay. 

 The simple stop delay metric downloaded from the TrafficLink portal is aggregated into 
15-minute intervals. In this section, the simple stop delay is analyzed by aggregation into 1-hour 
intervals. The intersection of La Cholla Blvd. and River Rd. is chosen as an example location, and 
three days of simple stop delay data in January 2021 is used to analyze the simple delay trends, as 
shown in Figure 4-3. Figure 4-3 demonstrates that the left-turn delay and through delay in all four 
directions have similar temporal trends, with higher delay from 7 a.m. to 6 p.m. and lower delay 
during the night. The left-turn and through delay ranges from 0 to 130 seconds. In comparison with 
through delay, the left-turn delay has more fluctuation likely because of the stochastic arrival of 
left-turn vehicles and the permissive left-turn phase. In addition, the northbound and southbound 
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directions have greater delay for the left turn movement than the through movement during the 
daytime because of the high volume of left turns. Simple delay is calculated from the data 
generated by detectors at intersections, but most locations do not have detectors installed for right-
turn lanes. Therefore, most Miovision sensors can only provide simple delay for the through and 
left-turn movements. 

 

Figure 4-3. Temporal trend of simple delay at La Cholla Blvd. & River Rd, Tucson 

 In addition to hourly delay, the Miovision-based delay can be used to calculate the delay 
reliability performance, 95th percentile delay, buffer delay, and buffer index. The 95th percentile 
delay is the delay where 95% of data are under it at a specific location and hour, and other two 
reliability indicators are calculated using the following two equations.  

𝐵𝑢𝑓𝑓𝑒𝑟 𝐷𝑒𝑙𝑎𝑦 = 95௧  𝐷𝑒𝑙𝑎𝑦 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦 (4-1) 
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𝐵𝑢𝑓𝑓𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 =
95௧ 𝐷𝑒𝑙𝑎𝑦 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦
 

(4-2) 

The three months of data collected from La Cholla Blvd. & River Rd. is used to calculate 
the four delay reliability indicators, as shown in Figure 4-4 – Figure 4-6. The 95th percentile delay 
show a smooth trend with lower value during night and higher value during daytime, indicating 
the delay during nighttime is more reliable than daytime. However, the buffer delay fluctuates 
more for 24 hours, and the trend depends on the direction and movement. The possible reason is 
that the average delay at different locations and times varies, leading to this fluctuating trend. In 
addition, the buffer index shows that the delay during daytime is more reliable than nighttime. 
When the buffer index is larger than 40%, the traffic delay at an intersection is deemed unreliable. 
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Figure 4-4. 95th percentile simple delay at La Cholla Blvd. & River Rd, Tucson during Jan.-
March 2021. 
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Figure 4-5. Buffer delay at La Cholla Blvd. & River Rd., Tucson during Jan.-March 2021. 

 

Figure 4-6. Buffer index at La Cholla Blvd. & River Rd., Tucson during Jan.-March 2021. 
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97 out of 108 signalized intersections with Miovision sensors have available simple delay 
data during Jan. – March 2021. The 1-hour interval simple delay is aggregated into intersection-
level average hourly through/left-turn delay by averaging three months of data in different 
directions (EB, WB, NB, SB) at an intersection. The pie chart size in Figure 4-7 is the sum of the 
average left-turn and through delay, and the areas of red and green slices indicate the proportions 
of left-turn and through delay, respectively.  

Figure 4-7(a) shows the spatial distribution of simple delay at 1 a.m. At midnight, most 
intersections have a very low delay on left-turn and through movements, specifically lower than 
10 seconds; some intersections even have zero delay due to a low volume. In addition, intersections 
on the La Cholla Blvd. corridor have a relatively higher delay but are still lower than 20 seconds. 
The proportions of the left-turn delay and the through delay are not consistent and vary with 
location. Figures 4-7(b) and 4-7(c) show the simple delay spatial distribution at morning and 
afternoon peaks, respectively. Most intersections at peak hours have a higher left-turn and through 
delay, ranging from 60 to 80 seconds, which is relatively congested. At these intersections, left-
turn delay is higher than through delay as indicated by the larger red slices and smaller green slices 
in the pie charts. However, some less congested intersections with a low delay have higher through 
delay than left-turn delay, which is likely because of the low left-tun volume. In addition, the 
proportions of left-turn delay and through delay at a location are similar at different hours during 
peak hours.  

Additionally, Figure 4-8 shows the spatial distribution of buffer index during off-peak and 
peak hours. Most intersections have more reliable delay during peak hours than off-peak hours, 
which is because the traffic pattern during peak hours is more consistent than during off-peak hours, 
when the traffic volumes vary more. The through movement has a more reliable delay than left-
turn at most intersections.   
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(a) simple delay at 1 a.m. 
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(b) simple delay at 8 a.m. 
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(c) simple delay at 5 p.m. 

Figure 4-7. Spatial distribution of average through and left-turn simple delay at different hours 

 



   

65 

 

   

 

(a) 1 a.m. 

 

(b) 8 a.m. 

Figure 4-8. Spatial distribution of buffer delay index 
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(c) 5 p.m. 

Figure 4-9. Spatial distribution of buffer delay index  

 Figure 4-9 shows the simple delay distribution of all intersections by the hour of the day. 
From midnight to 5 a.m., the distribution of through and left-turn delay approximates a log-normal 
distribution, with a mean value of lower than 5 seconds and a standard deviation of lower than 20 
seconds, which indicates that most intersections have low delay during the night. Starting at 7 a.m., 
the delay distribution is more like a mixture of two distributions, and the distribution standard 
deviation becomes significantly larger. This mixed distribution is likely because some intersections 
far from the urban area are less congested all day, and so have a distribution with mean close to 
zero. After 7 p.m., both the mean and standard deviation of the distribution become smaller due to 
the reduction of traffic volume.  
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Figure 4-10. Simple delay distribution by hour of the day 

4.1.2 Level-of-Service 

The intersection level-of-service (LOS) is identified using simple delay according to the LOS 
definition in the Highway Capacity Manual (Transportation Research Board, 2016). Figure 4-10 
shows the intersection LOS distribution by hour on March 17, 2021. At midnight (12am-4am), 
around 80 of all 94 study intersections have the LOS of A. Starting at 6 a.m., the LOS at more 
intersections drops from A to B, C, and D, indicating these locations become more congested.  



   

68 

 

 

Figure 4-11. Intersection LOS distribution by hour on March 17, 2021 

During the daytime (7 a.m. – 7 p.m.), only a limited number of intersections have LOS of 
F. During the morning peak, only 6 intersections have LOS of F, as shown in Table 4-1. Three of 
these intersections having LOS of F are located on the La Cholla Blvd. corridor, and one is located 
on the La Cañada Dr. corridor, and these two corridors are the major congested corridors in the 
area. In addition, the most congested intersection at morning peak is Pontatoc Rd. & Sunrise Dr., 
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which is not located on the above-mentioned corridors. A possible reason is that there is a high 
school near the intersection, attracting more traffic during peak hours. Same as the morning peak, 
Pontatoc Rd. & Sunrise Dr. is also the most congested intersection with LOS of F in the afternoon 
peak, again possibly due to the nearby high school. As shown in Table 4-2, all top ten congested 
intersections have LOS of F, and most of these locations are located on one of the two corridors 
mentioned above. At midnight, only one intersection (Ina Rd. & La Cholla Blvd.) has a LOS worse 
than B, and the rest of the intersections have a LOS of A or B as shown in Table 4-3. 

Table 4-1. Intersection Ranking based on the LOS at 8 a.m. 

Rank Hour Intersection Intersection  
Delay/s 

LOS Date 

1 08 Pontatoc Rd. / Sunrise Dr. 97 F 2021-03-17 
2 08 La Cholla Blvd.  / Orange Grove Rd. 93 F 2021-03-17 
3 08 Ina Rd. / La Cholla Blvd. 88 F 2021-03-17 
4 08 Ina Rd. / La Cañada Dr. 86 F 2021-03-17 
5 08 Cortaro Farms Rd. / Thornydale Rd. 86 F 2021-03-17 
6 08 La Cholla Blvd.  / River Rd. 83 F 2021-03-17 
7 08 Sunrise Dr. / Swan Rd. 74 E 2021-03-17 
8 08 La Canada Dr.  / Magee Rd. 69 E 2021-03-17 
9 08 Craycroft Rd. / Sunrise Dr. 69 E 2021-03-17 

10 08 La Cholla Blvd.  / Magee Rd. 67 E 2021-03-17 

Table 4-2. Intersection Ranking based on the LOS at 5 p.m. 

Rank Hour Intersection Intersection  
Delay/s 

LOS Date 

1 17 Pontatoc Rd. / Sunrise Dr. 105 F 2021-03-17 
2 17 Ina Rd. / La Cholla Blvd. 96 F 2021-03-17 

3 17 La Cholla Blvd. / River Rd. 95 F 2021-03-17 

4 17 La Cholla Blvd.  / Orange Grove Rd. 95 F 2021-03-17 

5 17 Cortaro Farms Rd / Thornydale Rd. 94 F 2021-03-17 

6 17 La Canada Dr. / Magee Rd. 87 F 2021-03-17 

7 17 Flowing Wells Rd. / Wetmore Rd. 84 F 2021-03-17 

8 17 La Cholla Blvd.  / Ruthrauff Rd. 84 F 2021-03-17 

9 17 La Canada Dr. / Orange Grove Rd. 82 F 2021-03-17 

10 17 Ina Rd. /  La Cañada Dr. 82 F 2021-03-17 
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Table 4-3. Intersection Ranking based on the LOS at 1 a.m. 

Rank Hour Intersection Intersection 
Delay/s 

LOS Date 

1 01 Ina Rd. / La Cholla Blvd. 34 C 2021-03-17 

2 01 Nogales Hwy / Old Nogales Hwy 14 B 2021-03-17 

3 01 Camino De Oeste / Valencia Rd. 10 B 2021-03-17 

4 01 La Cholla Blvd. / River Rd. 10 B 2021-03-17 

5 01 La Cholla Blvd. / Ruthrauff Rd 10 B 2021-03-17 

6 01 Cardinal Ave. / Valencia Rd. 10 B 2021-03-17 

7 01 Flowing Wells Rd. / Wetmore Rd. 9 A 2021-03-17 

8 01 Ajo Way /  Palo Verde Rd. 8 A 2021-03-17 

9 01 Benson Hwy / Swan Rd. / Valencia Rd. 8 A 2021-03-17 

10 01 Mission Rd. / Valencia Rd. 7 A 2021-03-17 

4.1.3 Arrival-on-Green 

The arrival-on-green (AoG) is calculated based on the signal status when the advance detector is 
triggered by arriving vehicles. Because only the through movement is configured with advance 
detectors at study locations, we only calculated the AoG for the through movement. Figure 4-11 
shows the temporal trend of three days of AoG in January 2021 at La Cholla Blvd. & River Rd. 
The AoG at La Cholla Blvd. & River Rd. during daytime is consistent, ranging from 20% to 40%, 
except for WB. WB has a consistent peak during the afternoon from 3 p.m.-5 p.m. with the AoG 
around 60%, which is probably because the primary objective of the signal coordination design in 
the afternoon is to improve WB traffic. However, the nighttime does not have a clear trend of AoG 
as shown in Figure 4-11. Sometimes, EB and WB have a peak during midnight and NB and SB 
have a very low AoG such as on Jan. 6 and 8, 2021, but NB and SB have a peak and EB and WB 
have a very low AoG on Jan 7. The AoG trend during nighttime is inconsistent probably because 
of fewer vehicle arrivals and actuation signal timing control.  
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Figure 4-12.  Temporal trend of AoG at La Cholla Blvd. & River Rd., Tucson 

Figure 4-12 shows the spatial distribution of AoG and AoR at midnight, morning peak, and 
afternoon peak, respectively. The sum of AoG and AoR is 100% of all arriving vehicles, and the 
proportion of red and green pie slice indicates the average intersection-level AoR and AoG, 
respectively. As shown in Figure 4-12(a), most intersections have an AoG larger than 50% at 1 
am, but a few intersections still have an AoG smaller than 50%. This low AoG at 1am easily occurs 
at some large intersections where all directions have a similar volume but only one direction is 
coordinated, causing the other directions to have more vehicles arrive during the red time. During 
the morning peak and afternoon peak, the AoG is typically lower than 50% at most intersections 
as shown in Figures 4-12(b) and 4-12(c). Another finding is that AoG at an intersection during the 
morning peak is similar to the afternoon peak. 
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(a) AoG at 1 a.m. 
 

Figure 4-13. Spatial distribution of AoG at different hours 
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(b) AoG at 8 a.m. 
 

Figure 4-14. Spatial distribution of AoG at different hours 
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(c) AoG at 5 p.m. 

Figure 4-15. Spatial distribution of AoG at different hours 

The Miovision-based AoR can be used to calculate the AoR reliability performance, 95th percentile 
AoR, buffer AoR, and buffer AoR index. The 95th percentile AoR is the AoR where 95% of data 
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are under it at a specific location and hour, and other two reliability indicators are calculated using 
the following equation. 

𝐵𝑢𝑓𝑓𝑒𝑟 𝐴𝑂𝑅 = 95௧  𝐴𝑂𝑅 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑂𝑅 (4-3) 

Figures 4-13 shows the temporal trend of four AoR reliability indicators at La Cholla Blvd. & 
River Rd. The reason of using AoR rather than AoG is to ensure that a high reliability indicator 
value represents less reliability, and a low value represents more reliability, which is consistent 
with delay reliability indicators. These four figures show that the AoR reliability is similar for all 
4 directions during most hours. However, the buffer AoR shows the minor directions (NB and SB) 
have a less reliable AoR during nighttime. 

 

Figure 4-16. Buffer AoR at La Cholla Blvd. & River Rd., Tucson during Jan.-March 2021. 

 

4.1.4 Split Failure 

Split failure occurs when a signal phase cannot serve the demand within one cycle and is identified 
based on the green occupancy ratio (GOR) and the red occupancy ratio during the first five seconds 
of red (ROR5). The occupancy data is calculated using the event-based data collected by stop-bar 
detectors. When GOR and ROR5 are both higher than 80% during a phase, this indicates that a 
split failure occurred. We calculated the intersection-level average split failure percentage as the 
total number of split failures divided by the total number of cycles. Figure 4-14 shows the temporal 
trend of the split failure percentage of left-turn and through movements at La Cholla Blvd. & River 
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Rd. The signal timing for the through movement has a low split failure likelihood, lower than 
0.25%. The signal timing for the left-turn movement has a relatively higher split failure likelihood 
but still lower than 2%.  

 

Figure 4-17. Temporal trend of average split failure percentage at La Cholla Blvd. / River Rd 

The signal timing has a very low likelihood of split failure during the nighttime because the traffic 
volume is very low, and all vehicles can be served within one cycle. In Figure 4-15, the size of the 
circle is the sum of the split failure percentages for the left-turn and through movements. The grey 
circles indicate the intersections do not have split failure. Curtis Rd. & La Cholla Blvd. and La 
Cholla Blvd. & Magee Rd. had split failure around 0.1% at 1 am, but no other intersections had 
split failure at 1 a.m. At peak hours, most intersections have split failure as shown in Figures 4-
15(b) and 4-15(c), most intersections have split failure due to the higher traffic volume during 
peak hours. Most intersections have a split failure percentage for the left-turn movement that is 
significantly higher than the through movement. 
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(a) Split failure percentage at 1 a.m. 

Figure 4-18. Spatial distribution of split failure percentage at different hours 
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(b) Split failure percentage at 8 a.m. 

Figure 4-19. Spatial distribution of split failure percentage at different hours 
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 (c) Split failure percentage at 5 p.m. 

Figure 4-20. Spatial distribution of split failure percentage at different hours 
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The Miovision-based split failure can be used to calculate the split failure reliability performance, 
95th percentile split failure, buffer split failure, and buffer split failure index. The 95th percentile 
SP is the split failure where 95% of data are under it at a specific location and hour, and other two 
reliability indicators are calculated using the following equation. 

𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝐹 = 95௧ 𝑆𝐹 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 SF  (4-4) 

Figures 4-16 and 4-17 show the temporal trend of 95th percentile and buffer SF percentages, 
respectively, at La Cholla Blvd. & River Rd., with 0 at most hours especially for the through 
movement. For the left-turn movement, nighttime tends to have more reliable split failure than 
daytime.  

 

Figure 4-21. 95th percentile split failure percentage at La Cholla Blvd. & River Rd. during Jan.-
March 2021 
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Figure 4-22. Buffer split failure percentage at La Cholla Blvd. & River Rd during Jan.-March 
2021 

 

4.2 MOBILITY/RELIABILITY PERFORMANCE COMPARISON 

Because both Miovision data and Wejo data can provide mobility performance measures including 
delay, LOS, AoG, and split failure, we compare these two data sources and quantify the similarity 
in this section. 

4.2.1 Delay Comparison 

Figure 4-18 shows the comparison between Miovision delay and Wejo delay at La Cholla Blvd. 
& River Rd. This comparison uses two days of data and shows that both the left-turn and through 
delay calculated from Wejo data fluctuate more and have more outliers than Miovision delay, 
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especially during the nighttime due to the small sample of Wejo vehicles. In addition, the Wejo-
based data is slightly lower than Miovision-based delay during the daytime, which could be 
because of the calculation method difference.  

 

Figure 4-23. Comparison between Miovison delay and Wejo-based delay at La Cholla Blvd. / 
River Rd. 

The Kolmogorov-Smirnov (K-S) test is used to decide if the delay data from these data sources 
are from the same distribution by statistically quantifying the distance between the two cumulative 
distributions. Figure 4-19 shows the cumulative distribution function (CDF) comparison of two 
types of delay at La Cholla Blvd. / River Rd., where “D” represents the maximum vertical distance 
between the two CDFs and “P”, the p-value, is the probability that the two data sources are similar 
under the null hypothesis of the K-S test. All p-values of the K-S test for both the left-turn and 
through movements are zero, less than 0.05, indicating that Wejo delay is statistically different 
from Miovison delay. In addition, the probability of Wejo delay being zero is high because some 
time periods had no sample Wejo data, especially during the nighttime. 
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Figure 4-24. Delay cumulative distribution function comparison at La Cholla Blvd. / River Rd. 

Additionally, the two types of delay reliability are compared using the four reliability indices. 
Figures 4-20 to 4-22 show the temporal trends of Miovision-based and Wejo-based delay 
reliability at La Cholla Blvd. & River Rd. For the 95th percentile delay, the two types of data show 
a similar trend with higher reliability during nighttime than during daytime, but the measures 
derived from Wejo data fluctuate more due to the varying sample sizes. The temporal trend of the 
buffer index is different from the other two indices, but the two types of data show a similar trend, 
with the daytime reliability higher than nighttime.  
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Figure 4-25. Comparison between Miovison and Wejo-based 95th percentile delay at La Cholla 
Blvd. / River Rd. 
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Figure 4-26. Comparison between Miovison and Wejo-based buffer delay at La Cholla Blvd. / 
River Rd. 

 

Figure 4-27. Comparison between Miovison and Wejo-based buffer index at La Cholla Blvd. / 
River Rd. 
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The K-S test is again used to quantify the similarity between the measures derived from Miovision 
data and the measures derived from Wejo data. As shown in Figure 4-23, the P-value for both left-
turn and through movements for both the buffer index are zero, indicating that the distributions are 
significantly different for both indices. One possible reason for this difference is that the Wejo 
sample sizes vary too much. To provide more robust reliability performance measures, sufficient 
sample sizes are needed consistently.  

 

Figure 4-28. Reliability indices cumulative distribution function comparison at La Cholla Blvd. / 
River Rd. 

4.2.2 Level-of-Service Comparison 

The Wejo delay and Miovision delay are used to calculate the intersection LOS according to HCM. 
Figure 4-24 shows the comparison between Wejo LOS (Wejo_LOS) and Miovison LOS 
(Mio_LOS) at La Cholla Blvd. / River Rd. Both types of LOS show the same temporal trend with 
a low LOS in the daytime and a high LOS at nighttime. The Wejo LOS tends to be one level higher 
than Miovision LOS, especially during the daytime, likely because the Wejo-based delay is lower 
than Miovision-based delay according to the results in Section 4.2.1.  
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Figure 4-29. LOS comparison at La Cholla Blvd. / River Rd, Tucson 

 To quantify the similarity between Wejo-based and Miovision-based LOS, the data at all 
study intersections are used to calculate the confusion matrix to visualize the performance of two 
types of delay comparison, and the results are shown in Table 4-4. The total accuracy is 0.568.   

Table 4-4. Confusion matrix of LOS comparison  

  Miovision LOS 

W
ejo L

O
S

 

 A B C D E F 

A 32,194 9,889 1,539 579 390 184 

B 5,766 10,855 3,454 373 83 17 

C 1,510 4,462 6,598 3,715 482 103 

D 239 304 1,335 4,466 4,643 850 

E 30 29 44 188 1,170 1,688 

F 8 9 9 18 8 81 
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4.2.3 Arrival-on-Green Comparison 

Figure 4-25 shows the comparison between Miovison AoG and Wejo AoG at La Cholla Blvd. / 
River Rd. Wejo AoG fluctuates more than Miovison AoG, especially during nighttime when the 
number of Wejo vehicles is low. In addition, some periods had no Wejo sample vehicles to calculate 
the AoG, and so those values are missing. Figure 4-26 shows the AoG CDF comparison at La 
Cholla Blvd. / River Rd., and the p-value of the K-S test for each of the four directions is 0, 
indicating that Wejo AoG is statistically different from Miovison AoG. 

 

Figure 4-30. Comparison between Miovison AoG and Wejo AoG at La Cholla Blvd. / River Rd. 
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Figure 4-31. AOG cumulative distribution function comparison at La Cholla Blvd. / River Rd 

Figures 4-27 to 4-28 compare the three reliability performance measures derived for AoR from 
Wejo data to those same measures derived from Miovision data at La Cholla Blvd. & River Rd.  
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Figure 4-32. 95th percentile AoR comparison at La Cholla Blvd. / River Rd 

 

Figure 4-33. Buffer AoR comparison at La Cholla Blvd. / River Rd. 
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4.2.4 Split Failure Comparison 

Figure 4-29 shows the comparison between Wejo split failure and Miovison split failure at La 
Cholla Blvd. / River Rd. Both data sources show that split failure rarely occurs at this signal. The 
left turn movement has a higher likelihood of split failure than the through movement. Wejo split 
failure data is missing because these times have zero Wejo vehicles and, therefore, no trips that 
could be used to calculate split failure.  

 

Figure 4-34. Comparison between Miovision Split Failure and Wejo Split Failure at La Cholla 
Blvd. / River Rd. 

Figure 4-30 shows the split failure CDF comparison at La Cholla Blvd. / River Rd., and results 
show p-values for all directions except NB LT and SB LT larger than 0.1, indicating that Wejo split 
failure is statistically similar to the Miovison split failure. This similarity between the two data 
sources is likely because split failure is very rare at this signal. Specifically, about 99% of the 
calculated split failure percentages are zero. 
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Figure 4-35. Split failure cumulative distribution function comparison at La Cholla Blvd. / River 
Rd. 

Figures 4-31 to 4-32 compare two reliability performance measures for split failure derived from 
Wejo data to those same measures derived from Miovision data.  
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Figure 4-36. 95th percentile split failure comparison at La Cholla Blvd. / River Rd. 

 

Figure 4-37. Buffer split failure comparison at La Cholla Blvd. / River Rd. 
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CHAPTER 5: REPRESENTATIVENESS EVALUATION OF 
PERFORMANCE MEASURES   

Chapter 4 presents the traffic mobility performance results extracted from Wejo data and provided 
by the Miovision system, including delay and arrival-on-green (AOG). Through statistical analysis, 
differences were found between these two data sources. It is important to note that the difference 
between two data sources may vary based on the sample size of Wejo data at intersections. In this 
chapter, we will discuss the appropriate size of Wejo samples when using Wejo data as an 
independent measure or other model validation data. To quantify the impact of data sample size 
on performance accuracy, this chapter will assess the accuracy of various traffic mobility 
performance measures under different scenarios using traffic mobility performance data collected 
by the Miovision system.  

5.1 STUDY LOCATIONS  

To evaluate the accuracy of Wejo-based traffic performance measures at different penetration rates, 
this study utilizes Miovision traffic performance data. The selection of intersections for analysis is 
based on the availability of both data sources in the PAG region and intersection geometry. A total 
of 62 signalized intersections with unskewed geometry were selected for analysis, as shown in 
Figure 5-1. 

 

Figure 5-1. 62 study intersections in the PAG region 
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5.2 REPRESENTATIVENESS EVALUATION OF CONTROL DELAY  

Control delay is the primary performance measure for signalized intersections. According to the 
proposed method in Chapter 3, the control delay is extracted from the Wejo data by calculating the 
travel time difference between actual speed and free-flow speed in a defined segment. The delay 
performance provided by the Miovision system is “simple stop delay” rather than control delay. 
These two types of delay are defined and measured differently and may not be identical even as 
the penetration rate of Wejo increases. In addition to comparing the similarity between the two 
data sources, the correlation between these two types of delay is investigated. Therefore, the Wejo-
based delay, with sufficient sample size, should highly correlate with the Miovision-based delay. 
The left turn and through movements have different driver behaviors, causing inconsistent findings 
and results in representativeness evaluation, and so these two major movements are separated for 
analysis.  

5.2.1 Through Movement 

To compare the similarity between Miovision- and Wejo-based through movement delays, the 
intersection 1st Ave. & Orange Grove Rd. was selected as a sample location. We used four days of 
data from four directions at the study location to compare the two types of delay, as shown in 
Figure 5-2. The preliminary results indicate that the Wejo-based delay has a similar temporal trend 
to the Miovision-based delay, with a low delay during the night and a high delay during the daytime. 
However, the Wejo-based delay generally has a lower value than the Movision-based delay. This 
issue is acceptable because the two delay types have different components. In addition, the Wejo-
based delay fluctuates more than the Miovision-based delay, which has a smoother trend. This 
fluctuation of Wejo-based delay is probably caused by variations in the sample size of Wejo 
trajectories during different time intervals. For example, the Wejo-based delay may yield less 
accurate results when the sample size is too small. Therefore, the data sample size could be a 
significant factor to maintain the reliability and accuracy of the Wejo-based delay.  

 Based on this analysis we’d like to focus on the sample size analysis of Wejo data. All data 
collected from 62 intersections are categorized into different groups based on the sample size of 
Wejo data.  As shown in Figure 5-3, all data is partitioned into 34 groups; each plot shows the 
results of each group; and each group contains two sample sizes. For example, the data with one 
and two Wejo trajectories per hour are assigned to the same group. Most difference distributions 
have a roughly normal distribution, but the distributions when the sample size is larger than 50 
vehicles per hour become mixtures of distributions or show an unclear distribution. One 
explanation is the limited intersections and periods have a large sample Wejo data, displaying an 
unnoticeable pattern. According to the results with different sample sizes, the variance does not 
significantly decrease with the increase in sample size. Figure 5-4 provides a clearer comparison 
of different distributions and shows that the absolute distribution mean increases while the variance 
does not change much with the increase in sample size. Figure 5-5 shows the difference 
distributions by hours of the day. 
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Figure 5-2. Comparison between Wejo- and Miovision-based delay of through movement 

 

 

Figure 5-3. Distribution of the difference between two delays by sample size  
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Figure 5-4. Comparison between different distributions with various sample sizes 
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Figure 5-5. Comparison between different distributions with various sample sizes by hour of the 
day 

 

Specifically, Figure 5-4 shows that the distributions seem to shift towards the left. One 
possible reason for this shift to the left is the default distance selection for Wejo-based delay 
calculation. The original distance of 300 meters based on previous studies is used for delay 
calculation. In order to analyze and quantify the impact of the selected distance on the Wejo-based 
delay calculation, sensitivity analysis is conducted by changing the distance. The sensitivity 
analysis results are shown in Figure 5-6. When the selected distance is lower than 400 meters, the 
difference distribution mean decreases and becomes lower than zero with the number of Wejo 
trajectories increasing. When the selected distance is higher than 550 meters, the distribution mean 
increases with the number of Wejo trajectories increasing, and the difference between distribution 
variances becomes less significant. Choosing a distance between 500 and 550 meters for Wejo-
based delay calculation yields a consistent distribution mean of zero, regardless of the sample size 
and a slight decrease in distribution variance as the sample size increases. This result of smaller 
variance indicates that the accuracy of Wejo-based can be enhanced by increasing the sample size, 
which is consistent with the prior research. However, when the sample size is larger than 15 
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trajectories per hour, increasing the sample size has no significant effect on the distribution 
variance, implying that increasing the sample size cannot improve the accuracy and reliability. One 
plausible explanation for this is the inherent difference between Miovision-based delay and Wejo-
based delay, with Wejo-based delay potentially not matching the scale of Miovision-based delay 
despite having adequate sample data. Due to this intrinsic difference, using the error between the 
two types of delays as an indicator cannot reliably and reasonably evaluate the accuracy of the 
Wejo-based delay when Miovision-based delay is used as ground-truth data. 

 

Figure 5-6. Sensitivity analysis by changing the distance of Wejo delay estimation. 
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Since the accurate Wejo-based delay with a sufficient sample size should qualitatively indicate the 
traffic conditions as the Miovision-based delay, the Pearson correlation coefficient is used to 
quantify the similarity between these two types of delay. The correlation coefficient 𝑟 is calculated 
as Eq.5-1 

𝑟 =
∑(𝑥 − �̅�)(𝑦 − 𝑦ത)

ඥ∑(𝑥 − �̅�)ଶ(𝑦 − 𝑦ത)ଶ
 Eq. 5-1 

where 𝑥 is the values of Wejo-based delay in a sample i; 

�̅� is the mean of Wejo-based delay; 

𝑦 is the values of Miovision-based delay in a sample i; 

𝑦ത is the mean of Miovision-based delay. 

The correlation between Wejo-based delay and Miovision-based delay was calculated using data 
collected from the through movement at 62 study intersections. Figure 5-7 displays a high positive 
correlation coefficient of 0.75, indicating that the Wejo-based delay is highly correlated with 
Miovision-based delay. A box plot of the correlation coefficients for all directions at all 
intersections is presented in Figure 5-8 and shows that, at most locations, the correlation between 
the two delay measures is between 0.45 and 0.75. The variation in correlation coefficients across 
locations is likely due to the sample sizes of Wejo trajectories, which vary with location and time. 
Most relevant studies use two common indicators to determine the sample size of probe vehicle 
data: penetration rate and the number of trajectories. To control the data quality of Wejo-based 
delay, it is important to determine 1) which indicator should be used to indicate the Wejo data 
sample size in our study, and 2) what the threshold of the sample size is for yielding accurate and 
reliable Wejo-based delay. 
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Figure 5-7. Correlation between Wejo- and Miovision-based delay for through movement 

 

Figure 5-8. Box plot of correlation coefficients for all directions at all intersections 
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Figure 5-9 illustrates the correlation coefficients between Miovision-based delay and Wejo-based 
delay under different sample sizes. As seen in Figure 5-9(a) with the number of trajectories per 
hour as the sample size indicator, the correlation coefficient starts at 0.6 for the smallest sample 
size and increases as the sample size increases. Once the sample size exceeds 10 vehicles/hour, the 
coefficient is around 0.82, and only slightly increases even the sample size increases much more. 
With the penetration rate as the sample size indicator as shown in Figure 5-9(b), the coefficient 
increases relatively smoothly as the penetration rate increases and remains below 5%. Once the 
penetration rate exceeds 5%, the coefficient has no clear trend and has many outliers. Comparing 
the results of using the number of trajectories with the use of the penetration rate, the coefficient 
sensitivity analyses for both indicators show a clear and smooth increase as the sample size 
increases until the maximum coefficient is reached. The maximum correlation coefficient is 
achieved when the Wejo-based delay has a sufficient sample size of 10 trajectories per hour, and 
the coefficient does not significantly increase regardless of the increase in sample size. However, 
the penetration rate has no clear sufficient minimum value because the correlation is lower with a 
higher penetration rate, which is unreasonable. Thus, these results suggest that the number of 
trajectories is a more reasonable and reliable indicator of sample size for Wejo data.  

  

(a) with different numbers of trajectories          (b) with different penetration rates 

Figure 5-9. Correlation coefficients under different sample sizes 

 

It is important to consider traffic volume when selecting indicators and threshold values for Wejo 
data sample size. The sensitivity analysis is conducted by calculating the correlation coefficient 
trend under different levels of traffic volume approaching an intersection. The traffic volume is 
categorized into four groups: Free-flow traffic (<100 vph), low volume (100-500 vph), moderate 
volume (500-1000 vph), and high volume (>1000 vph). Figure 5-10(a) shows the correlation 
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coefficient trend with the number of trajectories under different traffic volumes. The correlation 
coefficient has a consistent trend for different traffic volume levels, except for the high-volume 
scenario. When the number of trajectories is below 10, there is an increasing trend, but it becomes 
flat after that. In the scenario with over 1000 vph, the increasing trend is absent because no data is 
available with a sample size lower than 20, and the trend is flat when the sample size is over 20, 
which matches the trends for the other traffic volume levels. Figure 5-10(b) shows how the 
correlation coefficients vary with the penetration rate under different traffic volumes. The results 
show that the correlation coefficient has different trends for different traffic volume levels. In the 
free-flow traffic scenario, the correlation coefficient slightly increases as the penetration rate 
increases but remains below 0.75 even when the penetration rate exceeds 10%. Different traffic 
volume levels require different penetration rates to reach the highest correlation coefficient. For 
instance, when the traffic volume is 100-500 vph, a penetration rate of 5% can yield a coefficient 
of 0.82, while a traffic volume of 500-1000 vph only requires a penetration rate of 2.5% to achieve 
the same coefficient. Therefore, there is not a consistent penetration rate that allows samples with 
different traffic volume levels to produce a reliable and accurate delay (by achieving the highest 
correlation between Wejo-based and Miovision-based delay). Determining the threshold values for 
penetration rate for different scenarios required additional volume data, which is time-consuming 
and costly to collect. However, the number of trajectories as the sample size indicator shows 
consistent correlation coefficients regardless of traffic volume. Hence, the number of trajectories 
can consistently indicate data accuracy under different scenarios without the need for traffic 
volume information.  

      

(a) with different numbers of trajectories              (b) with different penetration rates 

Figure 5-10. Correlation coefficients for various traffic volume levels 
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5.2.2 Left-turn Movement 

Due to the travel behavior difference between through and left-turn traffic, the results regarding 
the indicator selection and associated threshold values from the above analyses may not apply to 
left-turn traffic. The same analysis method is applied to left-turn traffic for controlling the data 
accuracy of Wejo-based delay for the left-turn movement. Using 1st Ave. & Orange Grove Rd. as 
an example location, the Wejo-based delay is compared with the Miovision-based delay regardless 
of the sample size, as shown in Figure 5-11.  These two types of delay consistently show that left-
turn traffic has low delay or even no delay at night. During the daytime, both types of delay show 
that the left-turn traffic has a higher delay than nighttime. However, Wejo-based delay shows more 
fluctuation than Miovision-based delay, likely due to the low sample size of Wejo data, which may 
affect its reliability. 

 

Figure 5-11. Comparison between Wejo- and Miovision-based delay of left-turn movement. 

 The difference between Miovision- and Wejo-based delay was calculated using left-turn 
data collected from all study intersections, and the difference distributions with various sample 
sizes are displayed in Figure 5-12. The 15 distributions show a leftward shift with a lower mean 
and similar standard deviation as the sample size increases. When the sample size is greater than 
20 vehicles per hour, the distribution consists of two normal distributions. One of the normal 
distributions with a positive mean suggests that Wejo-based delay is higher than Miovision-based 
delay. Upon further examination of the data and traffic videos, it was discovered that the mixture 
distribution was caused by an outlier intersection, Hermans Rd. & Nogales Hwy, which had high 
left-turn volume but zero delay. This was likely due to communication loss resulting in missing 
Miovision-based delay data. Figure 12 shows the adjusted distributions after removing outliers, 
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with a higher error and a lower variance as sample size increases. When using the error as the data 
quality control indicator, the information as shown in Figure 5-13 is unclear and difficult to 
interpret, which makes it challenging to draw any meaningful conclusions. The selected distance 
for Wejo-based delay calculation is one of the possible factors causing this interpretation difficulty. 
Therefore, a sensitivity analysis is conducted by changing the selected distance, and the results are 
shown in Figure 5-14. The results of the sensitivity analysis show the distribution trend as sample 
size varies becomes more interpretable when the distance is 400m or 450m, where distribution 
mean is zero regardless of the sample size, but the variance decreases as the sample size increases. 
These interpretable results indicate that larger sample size can improve the reliability of Wejo-
based delay. However, as with the through traffic, due to this intrinsic difference between 
Miovision-based delay and Wejo-based delay, using the error between the two types of delays as 
an indicator cannot reliably and reasonably evaluate the accuracy of the Wejo-based delay for the 
left-turn movement when Miovision-based delay is used as ground-truth data. 

 

Figure 5-12. Plots of distributions of the error with various sample sizes (Left-turn traffic) 
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Figure 5-13. Plots of distributions of the error with various sample sizes after removing outlier 
intersections (Left-turn traffic) 
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Figure 5-14. Sensitivity analysis by changing the distance. (Left-turn traffic) 

 

Eq.1 and the left-turn data collected from all study intersections were used to calculate the 
correlation between the two types of delay. Figure 5-15 shows the correlation coefficient is 0.63 
between the two types of delay for left-turn traffic, indicating a strong positive correlation. 
Miovision-based delay has more data points with zero delay than Wejo-based delay because of 
missing Miovision data due to signal controller communication loss. Figure 5-16 shows that the 
correlation coefficients between the two types of delay for all directions at all intersections range 
from 0.3 to 0.6. This inconsistent correlation could be due to the varying sample sizes of Wejo data 
at different locations. Two sample size indicators, the number of vehicles and the penetration rate, 
are applied to capture the impact of sample size on the correlation coefficient. Figure 5-17(a) 
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reveals that the correlation coefficient significantly increases as the number of vehicles increases. 
Once the number of vehicles exceeds 8 vph, the change of correlation coefficient with increasing 
sample size becomes insignificant. While using penetration rate, the change of correlation 
coefficient shows the same trend as using the number of vehicles, but with more outliers. Based 
on this comparison, the number of vehicles appears to be a more reasonable and reliable indicator 
for Wejo-based delay data quality control. 

 

Figure 5-15. Correlation between Wejo- and Miovision-based delay for left-turn movement. 
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Figure 5-16. Box plot of correlation coefficients for all directions at all intersections (left-turn 
traffic) 

 

 

         

(a) with different numbers of trajectories          (b) with different penetration rates 

Figure 5-17. Correlation coefficients under different sample sizes 
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The relationship between the correlation coefficient and the two sample size indicators 
might be influenced by the traffic volume, which varies across different intersections and times. 
Therefore, the left-turn traffic data is categorized into four groups based on the traffic volume: less 
than 50 vehicles per hour (vph), 50-100 vph, 100-200 vph, and more than 200 vph, for correlation 
analysis. Figure 5-18 (a) shows the relationship between the correlation coefficient and 
penetration rate under various left-turn traffic volumes, and the results clearly demonstrate that the 
relationships vary with traffic volume. When the left-turn traffic volume is low, a higher 
penetration rate is required to achieve the same coefficient in comparison with the high-volume 
conditions. For example, when the left-turn volume is lower than 50 vph, the correlation coefficient 
is lower than 0.75 even though the penetration rate is 20%; however, left-turn traffic with a volume 
higher than 200 vph only requires a penetration rate of 5% to reach a coefficient of 0.75. Figure 
5-18 (b) shows the relationship between the correlation coefficient and the number of sample 
vehicles under various left-turn traffic volumes, and the four relationships are similar. The 
correlation coefficient consistently increases as the number of sample vehicles per lane per hour 
increases and becomes stable when the number of sample vehicles per lane per hour is over 5 
vehicles. Rather than using the total volume and number of all sample vehicles in the through 
moment analysis, the number of lanes has a significant impact on the correlation so the number of 
sample vehicles per lane is used to find the threshold. According to Figure 5-18 (a), the left-turn 
traffic needs more than 5 sample vehicles per lane per hour to obtain the most accurate and reliable 
Wejo-based delay measurement. 

  

(a) with different numbers of trajectories              (b) with different penetration rates 

Figure 5-18. Correlation coefficients for various traffic volume levels  
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5.3 PREPRESENTATIVENESS EVALUATION OF ARRIVAL ON GREEN  

In this section, the Wejo-based AoG is compared to the Miovision-based AoG to determine the 
indicator and threshold for ensuring the data quality of Wejo-based AOG. The Miovision-based 
AoG is the percentage of vehicles that arrive at the intersection using advance detectors during the 
green interval of a phase. The Wejo-based AoG ratio is calculated as the ratio between the number 
of vehicles passing an intersection without a stop and the total number of Wejo trajectories through 
that intersection during a defined interval.  

We first use the data collected from one example intersection, Ina Rd. & La Cañada Dr., NB, to 
compare the temporal trend of these two types of AoG, as shown in Figure 5-19. The Miovision-
based AoG can only be provided for through movements using advance detectors, which are not 
configured for left-turn lanes in the PAG region. Figure 5-19 shows that the Wejo-based AoG has 
data gaps during nighttime due to the lack of Wejo trajectories. Moreover, Wejo-based AoG 
exhibits greater fluctuations than the Miovision-based AoG, possibly due to inconsistent sample 
sizes during different times. Despite these issues, both AoGs exhibit similar temporal trends during 
the daytime.   

 

Figure 5-19. Comparison between the Miovision- and Wejo-based AoG at Ina Rd & La Canada 
Dr, NB. 

Figure 5-20 displays the correlation between the Miovision and Wejo-based AOGs, with a 
correlation coefficient of 0.65 indicating a strong positive relationship. The regression fit line 
reveals that the Wejo-based AOG is slightly higher than the Miovision-based AOG, which could 
be due to the location of advance detectors. Inappropriately configured advance detectors can 
result in unreliable sensor-based AOGs, leading to overestimation issues. Figure 5-21 presents a 
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box plot of the correlation coefficients from all study intersections, ranging from 0.25 to 0.55 and 
varying by location. The inconsistent correlation relationship is likely due to the different sample 
sizes of Wejo data at various locations.  

 

Figure 5-20. Correlation between Wejo- and Miovision-based AOG for through movement 

 

Figure 5-21. Box plot of correlation coefficients for AoG for all intersections and road directions 
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The correlation coefficient can be influenced by the sample size of Wejo data, which can be 
measured by two common indicators: the number of sample vehicles per hour and the penetration 
rate. Figure 5-22(a) illustrates the correlation coefficient under different numbers of sample 
vehicles. As the number of sample vehicles increases, the correlation coefficient also increases and 
becomes consistent regardless of the sample size once the number of vehicles surpasses 20 per 
hour. Therefore, the highest correlation coefficient, around 0.82, occurs when there are more than 
20 sample vehicles per hour. Figure 5-22(b) displays the correlation coefficient under different 
penetration rates, calculated by dividing the number of sample vehicles by the total volume. The 
correlation coefficient initially increases with increasing penetration rate until reaching 5%. 
However, the correlation coefficient unexpectedly decreases as the penetration rate increases, 
which contradicts existing knowledge. One possible explanation is that low-volume locations can 
easily have a high penetration rate with only a few vehicles, but a few sample vehicles may not 
accurately reflect the traffic conditions, resulting in a low correlation coefficient. Moreover, more 
outliers are observed in Figure 5-22(b), leading to unreliable results of the Wejo-based AOG, even 
with high penetration rates. These outliers and the decreasing trend with penetration rate could be 
caused by the traffic volume.  

  

(a) with different numbers of trajectories (b) with different penetration rates 

Figure 5-22. Correlation coefficients of AOG under different sample sizes 

 

To analyze the correlation appropriately, all data is divided into four groups based on the total 
volume. Figure 5-23 illustrates that all four groups display a similar trend for the correlation 
coefficient as the number of sample vehicles increases. The correlation coefficient of all scenarios 
increases with an increase in the number of sample vehicles and reaches the highest coefficient of 
around 0.82 when there are approximately 18-20 sample vehicles per hour. One exception is the 
scenario with the highest volume, >1000vph, and the correlation coefficient fit line does not 
include the increase trend because high-volume scenarios commonly have more sample vehicles, 
providing a high correlation coefficient. Thereafter, the correlation coefficient remains 
significantly unchanged regardless of the increase in the number of sample vehicles. Additionally, 
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the impact of changing the penetration rate on the correlation is analyzed and compared under 
different volumes, as shown in Figure 5-23(b). According to Figure 5-23(b), the relationship 
between correlation and penetration rate is not consistent, because different scenarios need 
different penetration rates to reach the same correlation coefficient. With an increase in traffic 
volume, a lower penetration rate is needed for the same correlation coefficient. When comparing 
the changes in the correlation coefficient with the number of sample vehicles and the penetration 
rate, using the number of sample vehicles is more reliable and convenient for controlling the data 
quality of Wejo-based AOG because it provides a consistent correlation coefficient regardless of 
location, time, and volume. 

    

(a) with different numbers of trajectories              (b) with different penetration rates 

Figure 5-23. Correlation coefficients of AOG for various traffic volume levels  

5.4 REPRESENTATIVENESS EVALUATION OF SPLIT FAILURE 

In addition to control or stop delay and AOG, split failure is another important performance 
measure for quantifying traffic conditions, especially for identifying oversaturated conditions, 
because split failure occurs when a phase cannot serve all demand within one cycle.  

Split failure is a performance measure to indicate when the traffic demand cannot be served within 
one cycle, and it is calculated using the green occupancy ratio (GOR) and red occupancy ratio 
(ROR) collected by presence detectors (Day et al., 2014, 2008). Movision sensors report split 
failure when both GOR and ROR5 are higher than 80% (Miovision, 2022b). E. Saldivar-Carranza 
et al. (E. Saldivar-Carranza et al., 2021a) has proposed a method to use GPS data only to calculate 
the split failure ratio. We first identify all sample vehicles that stop more than once before passing 
through an intersection during a defined time interval. These are the vehicles that are not served 
within one cycle. Then this number of sample vehicles that stop more than once is calculated as a 
percentage of the total number of sample vehicles that pass through that intersection during the 
time interval, and that percentage is the split failure ratio. 
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In this section, the Wejo-based split failure is compared with Miovision-based split failure to find 
the reliable indicator and threshold for controlling the data quality of Wejo-based split failure. 
Figure 5-24 shows the comparison between Wejo- and Miovison-based split failure for through 
movements at Ina Rd. & Cholla Blvd. The data from both sources show that split failure occurs 
very rarely, with only one or two hours over three days showing split failure. In addition, as most 
of the data are zero, it is difficult to visually compare the two data sources or further investigate 
the relationship between Wejo- and Miovision-based split failure. Figure 5-25 shows the 
correlation coefficient, which is almost zero, indicating a very weak or non-existent correlation. 
The correlation coefficient might vary with the location and be impacted by the Wejo data sample 
size. Figure 5-26 displays the correlation coefficient by intersection and road direction, which 
ranges from 0 to 0.12. Furthermore, Figure 5-27 shows that the correlation coefficient has an 
insignificant change, lower than 0.12, as the number of sample vehicles increases.  

 

Figure 5-24. Comparison between Wejo- and Miovision-based split failure of through movement 
at Ina Rd. & La Cholla Blvd. 
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Figure 5-25. Correlation between Wejo-based and Miovision-based split failure for through 
movement 

 

 

Figure 5-26. Box plot of correlation coefficients for split failure for all intersections and road 
directions 
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Figure 5-27. Correlation coefficients for split failure under different sample sizes 

 

The low correlation coefficient between Wejo- and Miovision-based split failure is likely caused 
by so many zero values. According to the sensitivity analysis, increasing the sample size does not 
significantly improve the correlation coefficient because split failure rarely occurs. The Wejo-
based split failure of zero could be because the sample size is not sufficient but split failure did 
occur or because there is no split failure in the actual situation. Due to so many zero values, 
accurately capturing the relationship between these two types of split failure is challenging, 
regardless of the sample size. Therefore, it is difficult to determine a threshold for ensuring the 
data quality of Wejo-based split failure. 

5.5 REPRESENTATIVENESS EVALAUTON OF RELIABILITY 
PERFORMANCE 

5.5.1 Delay Reliability 

The delay reliability is calculated by location and movement using both Wejo and Miovision data, 
and the correlation between the delay reliability performance measures derived from both data 
sources is summarized in the box plots in Figure 5-28, which shows significantly higher 
correlation coefficients than those found in the delay comparison at the hourly level. 
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Figure 5-28. Box plot of correlation coefficients of 95th percentile delay for all intersections and 
road directions 

Figure 5-29 shows the correlation coefficients as the total number of sample vehicles changes. As 
shown in Figure 5-29(a), the correlation coefficient increases as the total number of sample vehicle 
increases until reaching a value of about 1 and then remains steady regardless of the increase in 
the total number of sample vehicles. When the total number of sample vehicles is higher than 500 
vehicles per hour, the Wejo-based delay reliability performance is strongly correlated with 
Miovison-based reliability performance. And for the left-turn movement in Figure 5-29(b), the 
correlation coefficient also increases as the total number of sample vehicles increases, but it does 
not show any clear relationship. The possible reason is the left-turn movement still needs 600 
vehicles or more as the sufficient sample size.  

 Figure 5-30 shows the correlation coefficients as the penetration rate changes. As shown 
in Figure 5-30(a), even though the correlation coefficient is around 1 when the penetration rate is 
higher than 1.5%, the relationship is not well defined, and the correlation coefficient even 
decreases slightly as the penetration rate continues to increase. For the left-turn movement, there 
is no clear relationship. 
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(a) Through movement                                    (b) left-turn movement 

Figure 5-29. Correlation coefficients of 95th percentile delay under different sample sizes 

 

    

(a) Through movement                               (b) left-turn movement 

Figure 5-30. Correlation coefficients of 95th percentile delay under different penetration rates 
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5.5.2 AoR Reliability 

Figure 5-31 shows a box plot of the correlation coefficients between Miovision-based AoR and 
Wejo-based AoR, which are significantly higher than the AoG correlation coefficients calculated 
at the hourly level. 

 

Figure 5-31. Box plot of correlation coefficients of 95th percentile AoR for all intersections and 
road directions 

As shown in Figure 5-32, the correlation coefficient increases as the total number of sample 
vehicles increases until reaching about 1 at around 1000 vehicles per hour.  Then, the coefficient 
remains steady regardless of the increase in the number of sample vehicles. As shown in Figure 
5-33, the relationship between correlation coefficient and penetration rate is similar to the 
relationship with the total number of sample vehicles but with more outliers.  
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Figure 5-32. Correlation coefficients of 95th percentile AoR under different sample sizes 

 

 

Figure 5-33. Correlation coefficients of 95th percentile AoR under different penetration rates 
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5.5.3 Split Failure Reliability 

Figure 5-34 shows the correlation coefficients when comparing Wejo-based split failure and 
Miovision-based split failure, which are significantly higher than the correlation coefficients 
calculated at the hourly level for both the through and left-turn movements. Figures 5-35 and 5-
36 show the correlation coefficient as the sample size changes and as the penetration rate changes, 
respectively, and no clear trend is observed.    

 

 

Figure 5-34. Box plot of correlation coefficients of 95th percentile split failure for all 
intersections and road directions 
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(a) through movement                                      (b) left-turn movement 

Figure 5-35. Correlation coefficients of 95th percentile split failure under different sample sizes 

 

    

(a) through movement                                      (b) left-turn movement 

Figure 5-36. Correlation coefficients of 95th percentile split failure under different penetration 
rates 

 

5.6 DATA QUALITY AND AVAILABILITY ANALYSIS 

Based on the analyses above, it can be concluded that using the number of sample vehicles is a 
more reliable and convenient method for selecting the threshold to ensure the data quality of Wejo-
based performance measures. Table 5-1 summarizes the threshold values for the three types of 
performance measures. These values can be used to examine and summarize the data quality and 
availability of Wejo-based performance measures in the PAG region.  
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Table 5-1. Threshold for different performance measures. 

 
Movement 

Through Left Turn 
Wejo-based Delay 16 vph 6 vph/lane 
Wejo-based AOG 16 vph - 

Wejo-based Split Failure - - 

The raw Wejo data collected from 560 major signalized intersections in the PAG region, as shown 
in Figure 5-37, are processed to calculate the number of sample vehicles. According to the 
threshold, the number of sample vehicles is categorized into three groups, no sample vehicles (0), 
insufficient sample vehicles (1-15), and sufficient sample vehicles (>=16). For the through 
movement, at least 16 vehicles per hour are appropriate for estimating Wejo-based performance 
measures, so fewer than 16 vehicles are considered insufficient. Figure 5-38 shows the temporal 
distribution of sample size for the through movement. From midnight to 6 am, the percentage of  
samples greater than 16 vph is very low, lower than 2%, and most sample sizes are zero . After 7 
a.m., around 20% of the samples meet the threshold, but around 60% are still lower than 16 vph. 
From noon to 6 p.m., more than 30% of the samples meet the threshold. After 8 p.m., the 
percentage of samples that meet the threshold becomes lower.  

Although the temporal distribution shows that more samples meet the threshold during the 
daytime, it does not follow the traffic volume trend. Traffic volume in the PAG region usually has 
two peak periods: the AM and PM peak periods. However, the percentage of sufficient sample 
sizes gradually increases from the early morning until noon, with a peak period during the 
afternoon, as shown in Figure 5-38. In addition, Figure 5-39 shows the temporal distribution of 
sample size for the left-turn movement. Similar to the through movement, the majority of the Wejo 
data collected lacks samples large enough to estimate performance measures of left-turn movement. 
Starting at 7 a.m., the percentage of sufficient sample sizes gradually increases and reaches 
approximately 5%. The afternoon shows the highest percentage of sufficient sample size, but it is 
still below 10%. 

Based on the temporal analysis, the percentage of Wejo data with sufficient sample size for both 
through and left-turn movements varies with the hour of the day, with the highest percentage during 
the afternoon. However, the left-turn movement has a much lower percentage of data with 
sufficient sample size than does the through movement, indicating that accurate Wejo-based 
performance measures for the left-turn movement may be more challenging to obtain. 
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Figure 5-37. Study locations
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Figure 5-38 Different threshold distributions of Wejo data for through movement by the hour of the day
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Figure 5-39. Different threshold distributions of Wejo data for left-turn movement by the hour of the day
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In addition to analyzing the temporal trend of Wejo data sample size, a spatial distribution analysis 
is conducted to investigate the spatial variability and attempt to identify any pattern or trend. 
Figure 5-40 displays the spatial distribution of different thresholds for the through movement 
during the day time. High-volume major corridors such as Valencia Rd., Kolb Rd., Speedway Blvd., 
and Wilmot Rd frequently have more than 50% of sample with sufficient size for the through 
movement. Although data for most intersections falls below the threshold, they still have Wejo 
data. The intersections with insufficient sample size are minor intersections located in suburban 
areas with relatively low volume throughout the day. 

 

Figure 5-40. Spatial distribution of Wejo data sample sizes for through movement (7 a.m.-8 p.m.) 
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Figure 5-41 shows the spatial distribution of different sample sizes for the left-turn movement. 
Most intersections, even those on major corridors, have a very low percentage of Wejo data 
samples with sufficient size, and even percentages as low as zero, especially at some minor 
intersections in the suburban area. In addition, most intersections have 50% or more of the Wejo 
data missing for the left turn movement, which is a very significant amount of missing data for the 
left-turn movement. 

 

Figure 5-41. Spatial distribution of Wejo data sample sizes for left-turn movement (7 a.m.-8 
p.m.) 
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CHAPTER 6: MOBILITY/RELIABILITY PERFORMANCE 
ESTIMATION USING MAXVIEW AND MIOVISION SYSTEM    

The Wejo data with a sufficient sample size is able to provide reliable and accurate traffic 
performance measures, including control delay and arrival-on-green (AOG) for indicating traffic 
conditions at signalized intersections, as presented on Chapter 5. However, the data availability 
analysis conducted in Chapter 5 reveals that only a limited number of locations and time periods 
possess sufficient Wejo data. Consequently, the majority of locations lack Wejo-based performance 
measures, posing challenges for transportation agencies seeking consistent monitoring and 
management of traffic throughout the region when using crowed sourced data as a monitoring or 
management tool. 

In the PAG region, an alternative data source known as signal event-based data exists, which has 
extensive coverage and is readily available. This event-based data is collected by the existing 
traffic sensors and has been archived into a database or online cloud without additional cost and 
time for sensor installation and data collection. Therefore, using this existing event-based data to 
estimate mobility is cost effective and saves time. Moreover, the estimated performance measures 
derived from this data can offer comprehensive insights into regional traffic conditions on a 24/7 
basis, benefiting from the consistent availability and wide coverage of the event-based data. 
Consequently, the primary objective of this task is to develop a methodology for estimating traffic 
performance measures, including control delay and AOG, using the available event-based data. 

6.1 DATA DESCRIPTION AND STUDY LOCATIONS 

6.1.1 Event-based Data Collected by MaxView System 

The MaxView system is an advanced traffic management system (ATMS) that utilizes various 
events generated by signal assets, such as detectors, signal heads, and pedestrian push buttons, to 
control traffic signals. Among these events, signal status and detection events are particularly 
crucial for assessing traffic performance. Figure 6-1 provides an illustration of the typical detector 
configuration within the MaxView system.  

 The major roads feature an advance detector with a bar-shaped configuration specifically 
designed to cover all through lanes, as highlighted in Figure 6-1(a). 

 The major roads feature a presence detector with a long arrow-shaped configuration 
specifically designed to cover left-turn lanes, as highlighted in Figure 6-1(a). 

 The minor roads feature a presence detector with a long arrow-shaped configuration 
specifically designed to cover through lanes, as highlighted in Figure 6-1(b). 

 The minor roads feature a presence detector with a long arrow-shaped configuration 
specifically designed to cover left-turn lanes, as highlighted in Figure 6-1(b). 

The detection event consists of two types of events, the detector-on events when vehicles arrive at 
the detector and the detector-off events when vehicles exit the detector, and the associated 
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timestamps. The signal events consist of a series of events indicating the signal status changing 
such as green light on and red light on.  

     

(a) Major road                                               (b) Minor road 

Figure 6-1. Typical detector configuration at signalized intersections in MaxView system 

6.1.2 Event-based Data Collected by Miovision System 

Similarly, the Miovision system is also capable of collecting event-based data using detectors. 
Detector configurations in Miovision sensors are different from that managed by the MaxView 
system. Figure 6-2 shows the typical detector configuration in Miovision sensors. 

 The through movement in four directions has both presence and advance detectors 
configured to cover multiple through lanes. The presence detectors are long loops and 
advance detectors are short loops. 

 The left-turn movement in four directions only has presence detectors configured, and one 
detector covers multiple left-turn lanes. 
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Figure 6-2. Typical detector configuration at signalized intersections in Miovision system 

Compared to the MaxView system's detector layout, Miovision sensors have presence and advance 
detectors configured on through movements across all road directions. Another distinction lies in 
the storage of event-based data, where Miovision stores the data in an online cloud server, while 
the MaxView system stores the data in a local database server. Figure 6-3 provides an illustration 
of the event-based data collection processes employed by these two systems.  

 

Figure 6-3. Event-based data collection process in MaxView and Miovision systems 
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6.2 METHODOLOGY 

6.2.1 Data Processing for Input 

The signal and detection events are highly related to performance measures, so the first step is to 
process event-based data to calculate associated input variables for the proposed estimation model. 
Figure 6-4 shows an example of vehicle trajectory and signal status. Three variables are extracted 
from event-based data. Occupancy time is the time difference between a vehicle triggering and 
leaving a detector, which is calculated using Eq. 6-1. 

𝑂𝑐𝑐 = 𝑡(𝑑) − 𝑡(𝑑) Eq. 6-1 

where Occ is occupancy time generated by the 𝑖୲୦ detection event; 𝑡(𝑑) is the timestamp when 
the detector is off in the 𝑖୲୦ detection event; and 𝑡(𝑑) is the timestamp when the detector is on 
in the 𝑖௧ detection event. 

The second related variable is the waiting time of the first vehicle arriving at the intersection during 
the red duration until the green light is on, which is calculated using Eq. 6-2.  

𝑊 = 𝐺ାଵ − 𝑡(𝑑)                                  Eq. 6-2 

where 𝑊 is the simple waiting time for a vehicle during the 𝑗୲୦ cycle; 𝑡(𝑑) is the timestamp of 

the first detector-on event during the red duration in the 𝑗୲୦ cycle; 𝐺 is the timestamp of the green 

duration starts of the 𝑗୲୦ cycle. In addition, the number of detection events (𝐶) is an important 
variable for indicating traffic conditions.  



   

134 

 

 

Figure 6-4. Vehicle trajectory and signal timing 

Additionally, the signal status has a significant impact on the above-mentioned three extracted 
input variables. For example, given the same number of detection events, if these events occurred 
during the green duration, the variable indicates a light traffic condition in comparison with the 
same number of detection events that occurred during the red duration. Therefore, the signal status 
should also be considered when extracting the above three detection-related variables. All signal 
statuses are categorized into three groups based on the combination of the signal status when the 
detector is on and off. 

 Red-to-Green: when vehicles trigger the detector during red duration and exit the detector 
during the green duration, as shown in Figure 6-5(a). 

 Red-to-Red: when vehicles trigger the detector during the red duration and exit the detector 
during the red duration as well, as shown in Figure 6-5(b). 

 Green-to-Green: when vehicles trigger the detector during the green duration and exit the 
detector during the green duration as well, as shown in Figure 6-5(c). 
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(a) Red-to-Green                                                             (b) Red-to-Red 

 

                        (c) Green-to-Green 

Figure 6-5. Signal status categorization based on detection events. 

After combing the detection-related variables and signal status, the input variables can be 
formulated using Eq. 6-3. 

𝑋 = 

𝑂𝑐𝑐(𝑘)തതതതതതതതത

𝑊(𝑘)തതതതതതത

𝐶(𝑘)

 × 
𝑅𝐺
𝑅𝑅
𝐺𝐺

൩ Eq. 6-3 

where 𝑋  is the input variables extracted from event-based data; 𝐶(𝑘)  is the total number of 
detection events during 𝑘௧ time period under three different signal statuses; 𝑂𝑐𝑐(𝑘)തതതതതതതതത and 𝑊(𝑘)തതതതതതത 
are average occupancy time and average simple waiting time during 𝑘௧  period under three 
different signal statuses, which are calculated using Eq.6-4 and Eq.6-5 

𝑂𝑐𝑐(𝑘)തതതതതതതതത =
∑ 𝑂𝑐𝑐

()
ୀଵ

𝐶(𝑘)
 Eq. 6-4 
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𝑊(𝑘)തതതതതതത  =
∑ 𝑊

ெ()
ୀଵ

𝑀(𝑘)
 Eq. 6-5 

where 𝑀(𝑘) is the number of cycles during 𝑘௧ time period under three different signal statuses.  

In addition to the variables extracted from event-based data, other relevant variables including 
speed limit, hour of the day, number of lanes, and shared (left or right turn) lane are included in 
input variables, so the input variables are formulated into Eq. 6-6. 

𝑋(𝑘) = {𝑋(𝑘), 𝑆, 𝐻, 𝐿, 𝐴}  Eq. 6-6 

where 𝑆, 𝐻, 𝐿, 𝐴 is the speed limit, hour of the day, number of lanes, and if there is a shared lane at 
the specific locations, and these four variables are converted into dummy variables. 

6.2.2 Model-Agnostic Meta-Learning (MAML) 

The raw data collected from various intersections are processed to calculate input 𝑋(𝑘) , and 
estimating performance measures at each location can be considered as a learning task. However, 
applying traditional machine learning methods for estimating region-wide traffic performance 
measures is challenging because of the following two issues: 

 Different intersections might have differences in terms of detector locations and lengths, 
which cause different relationships between the data collected by the detectors and 
performance measures. These various relationships are challenging to be accurately 
captured by traditional pre-trained machine learning models, especially when the pre-
trained model is applied to a new intersection.  

 The traditional machine learning models are challenging to handle the tasks with only 
limited data. The ground-truth traffic performance measures are extracted from probe 
vehicle trajectories data, but probe vehicle data currently has a relatively low sample size 
due to the high cost, especially at some small intersections.   

In order to address the above two issues, the model-agnostic meta-learning (MAML) algorithm is 
applied to estimate region-wide traffic performance measures at various signalized intersections 
using event-based data. The MAML algorithm is one of the emerging meta-learning methods that 
was proposed (Finn et al., 2017) for general and fast learning of various problems with a small 
amount of data and is compatible with being adapted to new tasks after fine-tuning the model using 
a small amount of training data. 

Figure 6-6 illustrates the training process of the MAML algorithm. The training dataset is 
categorized into a set of tasks 𝒯 = {𝒯ଵ, 𝒯ଶ, ⋯ , 𝒯 ⋯ , 𝒯}  according to the intersection and road 
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direction. The data in each task 𝒯 is then separated into support set 𝒟𝒯

ௌ  and query set 𝒟𝒯

ொ likely a 

first and a second training data set respectively.   

 

Figure 6-6. The training process of the MAML algorithm 

The network is represented using 𝑓ఏ with the parameters 𝜃. The training process of the MAML 
algorithm is to optimize the parameters 𝜃 according to the loss function. First, the support set 𝒟𝒯

ௌ  

in each task is adapted in to 𝑓ఏ, and the initial parameters 𝜃 are updated as 𝜃ᇱ using one gradient 
descent update, and the calculation is formulated as Eq.6-7. One gradient descent update is 
recommended for updating parameters in order to speed up the training procedure and avoid 
overfitting when using limited training data. 

𝜃ᇱ = 𝜃 − 𝛼∇ఏℒ൫𝜃|𝒟𝒯

ௌ ൯ Eq. 6-7 

where 𝛼 is the meta learning rate, and ℒ is the loss function. 

After obtaining the updated parameter 𝜃ᇱ for each task, the network with the updated parameters 

is applied to the query set 𝒟𝒯

ொ of each task for calculating the loss ℒ൫𝜃ᇱ|𝒟𝒯

ொ
൯ . The objective of the 

model training is to find the optimal parameters 𝜃 by minimizing the total loss of the network using 
the updated parameters 𝜃ᇱ across all tasks. Therefore, the meta-objective is formulated as Eq.6-8 

min
ఏ

 ℒ൫𝜃ᇱ|𝒟𝒯

ொ
൯

𝒯∼(𝒯)

= min
ఏ

 ℒ൫𝜃 − 𝛼∇ఏℒ൫𝜃|𝒟𝒯

ௌ ൯|𝒟𝒯

ொ
൯

𝒯∼(𝒯)

 Eq. 
6-8 
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The parameters 𝜃 are updated using stochastic gradient descent (SGD), which is formulated as 
Eq.6-9  

𝜃 ⟵ 𝜃 − 𝛽∇ఏ  ℒ൫𝜃ᇱ|𝒟𝒯

ொ
൯

𝒯∼(𝒯)

 Eq. 6-9 

where 𝛽 is the meta step size. 

When calculating the gradient decent for ∇ఏℒ൫𝜃ᇱ|𝒟𝒯

ொ
൯  in Equation (9), 
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 .  𝜃(𝑤)  and 𝜃ᇱ(𝑤)  are 𝑤୲୦  parameter in 𝜃  and 𝜃ᇱ . Therefore, the gradient 

descent is formulated as Eq. 6-10. 
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 Eq. 6-10 

Mean squared error (MSE) is used as the loss function, which is formulated as Eq. 6-11 

ℒ൫𝜃ᇱ|𝒟𝒯

ொ
൯ =  ฮ𝑓ఏᇲ൫𝑋(𝑘)൯ − 𝑦(𝑘)ฮ

ଶ

ଶ

(),௬()~𝒯

 Eq. 6-11 

where 𝑦(𝑘) is the traffic performance measure during the 𝑘௧ period at location 𝑖. 

Once the parameters 𝜃  are optimized in the training process, the model 𝑓ఏ  can be applied to 
estimate the traffic performance measures at intersections that might or might not be included in 
the training dataset. The first step is to further tune up the model  𝑓ఏ using a small amount of data 
in the new task to ensure the MAML can quickly learn how to estimate the traffic performance 
measure at this intersection. After tuning up the MAML, the model can be used to estimate traffic 
performance measures at the same intersection.  

6.3 IMPLEMENTATION AND RESULTS 

To evaluate the proposed method’s performance, the data including event-based data and ground-
truth control delay and arrival-on-green (AOG) ratio data is collected from 201 study intersections 
for model training and validation. Among these study intersections, 144 are managed by the 
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MaxView system and 57 are managed by the Miovision system. The data collected from Jan. 7 – 
March 30, 2021 is used as the training dataset, and 50% of the training data is support data, and 
the remaining training data is query data. The data from April 1-Nov. 30, 2021 is used as the 
validation dataset, with 20% of the validation dataset used for tuning up the model and the 
remaining 80% used to evaluate model performance. 

6.3.1 Control Delay Estimation 

The ground-truth control delay is derived from the Wejo connected vehicle data that has a sufficient 
sample size for ensuring accuracy. Once the proposed model is trained and tuned up for a specific 
location, the model can be used to estimate the control delay using event-based data collected 
through the MaxView system. Figure 6-7 illustrates the comparison between ground-truth and 
estimated control delay. Specifically, Figure 6-7(a) showcases the comparison for through 
movements where advance detectors are configured. In the plot, the red dashed line represents the 
ideal scenario where the estimated values align perfectly with the ground-truth values. Due to the 
large size of the validation dataset and the resulting overlap of data points, colors are utilized to 
indicate the density of overlapping points. Brighter colors indicate higher density. The comparison 
indicates that the points with the highest density align closely with the red dashed line, suggesting 
that the majority of estimated control delay values closely approximate the ground-truth delay. 
Some points with lower density are positioned on both sides of the red dashed line, indicating 
slight discrepancies between the estimated and ground-truth delay values but with a similar trend. 
However, when the control delay is larger than 150 seconds, the points appear below the red dashed 
line, indicating an underestimation issue with the estimated delay. Two possible reasons could 
cause this underestimation issue. According to observation, the data size for control delays 
exceeding 150 seconds is relatively limited compared to other data, which may affect the model's 
ability to accurately capture the relationship between input variables and control delay in that 
specific range. The other reason is there might be some outliers within the Wejo data, leading to 
incorrect ground-truth data that affects the accuracy of the estimation. 

Figure 6-7(b) illustrates the comparison between ground-truth and estimated delay for through 
movements with presence detectors. Similar findings from Figure 6-7(a) are observed in Figure 
6-7(b). These points with high density align closely with the red dashed line, indicating the 
estimated delay closely approximates the ground-truth delay. On the other hand, points with low 
density are situated on both sides of the red dashed line, suggesting some discrepancies between 
the estimated and ground-truth delay values, although they exhibit a similar trend. Similarly, when 
the delay is higher than 150 seconds, the estimated control delay also has an underestimation issue, 
which might be caused by the above-mentioned reasons. 
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(a) through movement with advance detectors 
configured   

(b) through movement with presence 
detectors configured 

 

(c) left-turn movement with presence detectors configured 

Figure 6-7. Comparison between estimated delay and ground-truth delay using the MaxView 
system at all study intersections 

Figure 6-7(c) illustrates the comparison between ground-truth and estimated left-turn control delay, 
where all left-turn lanes are exclusively configured with presence detectors. Similar to the previous 
plots, points with high density align closely with the red dashed line, indicating that the estimated 
left-turn delay closely approximates the ground-truth delay. In comparison to the results for the 
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through movement, the left-turn data exhibits a higher number of outliers with significant errors. 
Moreover, when the left-turn delay exceeds 250 seconds, the estimated delay encounters an 
underestimation issue. In addition to the possible reasons mentioned earlier, the training data for 
the left turn has a much lower sample size than the through movement after processing and 
cleaning the Wejo data, likely further leading to biased output. 

To provide a temporal comparison between the estimated and ground-truth delay for different 
movements and directions, the intersection of Speedway Blvd. & Euclid Ave. is chosen as an 
example. Figure 6-8 showcases the comparison between the estimated and ground-truth delay for 
left-turn and through movements in four directions across various dates and hours. 

In most instances, the estimated through and left-turn delay closely match the ground-truth data 
with only slight errors, particularly for EB and WB through movements where advance detectors 
are configured. One interesting finding is there are a few instances where there are significantly 
higher delays at certain hours compared to the regular delays, and the estimated delay consistently 
exhibits an underestimation issue during these periods. For example, the ground-truth delay at 3 
p.m. on Nov. 4, 2021 in Figure 6-8 (b) and at 5 p.m. on Nov. 4, 2021 in Figure 6-8(g) has a delay 
of 160 and 700 seconds, respectively, which is much higher than the regular delays observed in 
the same location. During these two hours, the estimated delay significantly underestimates the 
ground-truth delay. One possible reason is that these two ground-truth values could be outliers 
caused by some outliers in Wejo data. 

 

(a) WB left-turn movement                          (b) EB through movement 

Figure 6-8. Ground-truth and estimated control delay comparison at Speedway Blvd. & Euclid 
Ave.  
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(c) NB left-turn movement                  (d) SB through movement 

 

(e) EB left-turn movement                    (f) WB through movement 

 

(g) SB left-turn movement                       (h) NB through movement 

Figure 6-9. Ground-truth and estimated control delay comparison at Speedway Blvd. & Euclid 
Ave.  

To further quantify the performance of the proposed method on estimating control delay, the three 
metrics of mean absolute error (MAE), root mean square error (RMSE), RMSE%, and mean 
absolute percentage error (MAPE) are calculated for each location. All locations are categorized 
into three groups based on the movement and detector layout.  
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(a) MAE                               (b) RMSE                                    

  

(c) MAPE                            (d) RMSE% 

Figure 6-10. Method performance for delay estimation using the MaxView system by detector 
location and traffic movement. 

Figure 6-9(a) shows the boxplots of MAE for three groups of locations. The through movement 
with advance detectors configured demonstrates the best performance, with the majority of 
locations having an MAE lower than 10 seconds. The through movement with presence detectors 
configured exhibits an MAE ranging from 11 to 22 seconds with an average value of 17 seconds, 
which is higher than the locations with advance detectors. Left-turn movements have the highest 
MAE, with a range of 25-40 seconds. Similar findings are observed in RMSE and MAPE. Through 
movements with advance detectors perform the best, with an RMSE of 5-12 seconds and MAPE 
of 12%-15%. Movements with presence detectors perform second best, with an RMSE of 12-30 
seconds and MAPE of 15%-22%. Left-turn movements have the lowest performance, with an 
RMSE of 30-60 seconds and MAPE of 22%-27%. One possible reason for the lower performance 
of left-turn movements is the small size of the training data. Taking Figure 6-8(g) as an example, 
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the SB left-turn movement only has around 20 available data points over a span of five months. 
The limited amount of training data for left-turn movements may contribute to the lower accuracy 
in estimating the control delay. 

The event-based data collected from the other system, the Miovision system, is also used to train 
and validate the model for control delay estimation. In contrast to the MaxView system, the 
Miovision system employs both advance and presence detectors on through lanes, and presence 
detectors only on left-turn lanes. Additionally, the virtual detectors in the Miovision sensors are 
rectangular in shape, as opposed to bar or arrow detectors. Therefore, a separate model is trained 
using the data collected from the Miovision system.  

(a) through movement with both advance and 
presence detectors 

(b) left-turn movement with presence detector 

Figure 6-11. Comparison between estimated delay using Miovision system and ground-truth 
delay at all study locations 

Figure 6-10 shows the comparison between the estimated delay and ground-truth delay. All study 
locations are categorized into two groups: through movement with both advance and presence 
detector configured and left-turn movement with presence detector configured. As shown in 
Figure 6-10(a), most periods have a relatively low delay, and these data points closely align with 
the red dashed line, indicating a high level of accuracy in the estimated delay. However, a similar 
underestimation issue is also observed when the delay is higher than 100 seconds. In the case of 
left-turn movements, as depicted in Figure 6-10(b), the majority of data points are situated in close 
proximity to the red dashed line. However, it is worth noting that the estimated delay tends to 
underestimate the ground-truth values when the delay exceeds 200 seconds. 

To assess the accuracy and robustness of the model in estimating delay using data from the 
Miovision system, the three performance metrics MAE, RMSE, and MAPE are calculated. Figure 
6-11 presents the results of these metrics. It is observed that the through movement exhibits lower 
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error rates compared to the left-turn movement. For the through movement, the proposed method 
demonstrates a similar performance in estimating delay using data from both the Miovision and 
MaxView systems. However, when estimating the delay for left-turn movements, the model 
utilizing data from the Miovision system shows relatively higher performance compared to the 
MaxView system.  

 

(a) MAE                              (b) RMSE                                   

 

(c) MAPE                       (d) RMSE% 

Figure 6-12. Method performance for delay estimation using the Miovison system by detector 
location and traffic movement 

6.3.2 Arrival-on-Green Estimation 

The data collected from the MaxView system is utilized to train and validate the model for 
estimating the AOG ratio. Figure 6-12 provides a visual comparison between the estimated AOG 
and the ground-truth AOG at all study locations. The study locations are also divided into three 
groups based on the traffic movement and detector configurations: through movement with 
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advance detector configured, through movement with presence detector configured, and left-turn 
movement with presence detector configured.  

Figure 6-12(a) shows the comparison between estimated and ground-truth AOG ratio for the 
through movement at locations with advance detectors configured. Most data points align with or 
are close to the red dashed line, indicating that the estimated AOG values closely approximate the 
ground-truth values. In Figure 6-12(b), the data comparison is shown for through AOG at 
locations with presence detectors configured. Most data points are close to the red dashed line, 
demonstrating that the proposed model provides reliable and accurate AOG data. However, an 
underestimation issue is observed when the AOG exceeds 60%. This can be attributed to the 
smaller amount of data in this higher AOG range compared to the lower AOG range, which affects 
the model's ability to accurately capture the relationship between input variables and AOG. Figure 
6-12(c) shows the comparison between estimated and ground-truth left-turn AOG at locations with 
presence detectors. While most of the data points are close to the red dashed line, there are 
numerous outliers that deviate significantly from it, particularly when the AOG is higher than 30%. 
This could be due to the smaller sample size for left-turn movements or the lower reliability and 
accuracy of using Wejo data for left-turn AOG calculation, which requires further investigation. 

 

 

 

 

 

 

 



   

147 

 

   

 

(a) through movement with advance detectors 
configured   

(b) through movement with presence 
detectors configured 

 

(c) left-turn movement with presence detectors configured 

Figure 6-13. Comparison between estimated AOG and ground-truth AOG using the MaxView 
system at all study locations 

Speedway Blvd & Euclid Ave is used as the example to temporally illustrate the comparison 
between estimated and ground-truth AOG for left-turn and through movements across four road 
directions, as shown in Figure 6-13.  For through movements, the estimated AOG values closely 
match the ground-truth values during most time periods with only slight errors observed. 
Furthermore, the estimated AOG exhibits a similar temporal trend to the ground-truth AOG, 
indicating that it accurately captures the changes in traffic conditions. However, for left-turn 
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movements, the estimated AOG shows higher errors across most time periods. When the AOG is 
higher than the usual range, the estimated AOG values tend to underestimate the ground-truth 
values. Conversely, overestimation issues occur when the AOG is significantly lower, even 
reaching zero. These higher errors in estimated left-turn AOG can be attributed to two major factors: 
the smaller data size available for left-turn movements and the potential inaccuracies in the ground-
truth data. 

 

(a) WB left-turn movement                          (b) EB through movement 

 

(c) NB left-turn movement                  (d) SB through movement 

 

(e) EB left-turn movement                    (f) WB through movement 

Figure 6-14. Ground-truth and estimated AOG comparison at Speedway Blvd. & Euclid Ave. 
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(g) SB left-turn movement                       (h) NB through movement 

Figure 6-15. Ground-truth and estimated AOG comparison at Speedway Blvd. & Euclid Ave. 

  

(a) MAE                              (b) RMSE                                 

  
(c) MAPE                            (d) RMSE% 

Figure 6-16. Model performance for AOG estimation using the MaxView system by detector 
location and traffic movement 
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To evaluate the performance of the model for AOG estimation, the three performance metrics MAE, 
RMSE, and MAPE, are calculated for different movements and detector configurations. The 
results, as presented in Figure 6-14, indicate varying levels of performance across different 
scenarios. For through movements with advance detectors configured, the model achieves the 
highest performance. The MAE ranges from 7% to 10%, the RMSE ranges from 10% to 13%, and 
the MAPE ranges from 13% to 30%. These results highlight the model's ability to accurately 
estimate AOG data using event-based data for through movements with advance detector 
configurations. Through movements with presence detectors show similar MAE and RMSE values 
to those with advance detectors. However, the MAPE value is higher for these locations, primarily 
because they tend to have lower AOG ratios. Nonetheless, the model still demonstrates a 
reasonably good performance for estimating AOG in these scenarios. The proposed method has 
the lowest performance for left-turn movement due to the above-mentioned two possible reasons.  

The event-based data collected from the Miovision system is also used to train the proposed model 
for AOG estimation. Figure 6-15(a) depicts the comparison between the estimated and ground-
truth AOG for the through movement. Most data points align closely with the red dashed line, 
indicating that the proposed method accurately estimates the AOG for the through movement. 
Figure 6-15(b) shows the AOG comparison for the left-turn movement. Obviously, the proposed 
model for left-turn AOG estimation exhibits a higher error, particularly when the AOG exceeds 
50%. This finding is consistent with the left-turn AOG estimation using data collected from the 
MaxView system. 

  
(a) through movement with both advance and 

presence detector 
(b) left-turn movement with presence detector 

Figure 6-17. Comparison between estimated AOG using Miovision system and ground-truth 
AOG at all study locations 

The model performance for left-turn and through AOG estimation is quantified using MAE, RMSE, 
and MAPE, as presented in Figure 6-16. For the through movement, the model achieves an MAE 
of 7%-10%, an RMSE of 10%-12%, and a MAPE of 10%-30%. These performance metrics 
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indicate that the proposed model performs well in estimating AOG for the through movement. The 
results are consistent with the performance observed when using the MaxView system, indicating 
that the model maintains a reliable and consistent performance regardless of the detector type. On 
the other hand, the model performance for left-turn traffic is relatively lower than that for the 
through movement. The left-turn AOG estimation exhibits higher errors compared to the through 
movement, as reflected in the higher MAE, RMSE, and MAPE values. This aligns with the 
findings observed in the MaxView system. 

 
(a) MAE                              (b) RMSE                                   

  
(c) MAPE                          (d) RMSE% 

Figure 6-18. Model performance for AOG estimation using Miovision system by detector 
location and traffic movement 
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CHAPTER 7: ACCEPTANCE CRITERIA DEVELOPMENT    
To control the output data quality from the proposed estimation methods, the project team will 
develop an integration method with multiple sources of sample data based on the findings from 
Tasks 3 through 6. A quality assurance and quality control (QA/QC) procedure is then developed 
for assessing data derived from Wejo connected vehicle data and traffic performance estimated by 
the proposed estimation model. Acceptance criteria, such as mean absolute error (MAE), mean 
absolute percentage error (MAPE), and root-mean-square error (RMSE), will be developed by the 
findings from sample traffic data assessment and literature review. 

7.1 DATA COLLECTION AND PROCESSING 

In this project, three major data sources are collected and analyzed: performance measures 
provided by the Miovision system, Wejo connected vehicle data, and high-resolution event-based 
data collected by the Miovision and MaxView systems. The Miovision system can provide simple 
(stop) delay, arrival-on-green, and split failure. These three performance measures can be directly 
downloaded through a specific platform developed by Miovision after undergoing data cleaning 
and processing, and therefore, further data processing is not needed. Simple delay and split failure 
can also be extracted from high-resolution event-based data according to their definition. This 
extraction process involves data cleaning and processing, particularly when dealing with any 
missing data within the event-based data.  

Wejo data is used to extract accurate traffic performance measures as the ground-truth data, so 
necessary data processing is required to control the data quality. In addition to removing the 
trajectory outliers that fall outside the road network, the threshold for sample size has been 
determined to filter the data that can be used to calculate reliable and accurate performance 
measures. This step is important because the accuracy of Wejo data for performance measure 
calculation can vary based on the sample size. The details regarding the determination of this 
threshold are presented in Chapter 4. 

High-resolution event-based data collected from the Miovision and MaxView systems are used to 
estimate traffic performance measures. The high-resolution data may have data missing due to 
communication loss, and so the data must be quality checked and cleaned before being used for 
performance measure estimation. After data cleaning, the data is input into the proposed method 
for estimating performance measures. To control and ensure the data quality of the estimated 
performance measures, the associated acceptance criteria are developed according to the literature 
review and data validation results. 

7.2 ACCEPTANCE CRITERIA DEVELOPMENT 

Developing acceptance criteria is one of the critical steps in QA/QC procedures, specifying the 
conditions that must be met for estimated performance measures, including control delay and AOG, 
to be considered valid, accurate, and acceptable. 
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The purpose of using the estimated performance measures as well as the data resolution should be 
determined and clarified first. In this project, the data is mainly used for two purposes, real-time 
traffic monitoring and long-term traffic planning. The hourly-based performance measures are 
estimated for the use of real-time traffic monitoring, and the hourly-based data is aggregated into 
monthly average hourly data for the use of long-term traffic planning. 

7.2.1 Literature Review Summary 

Multiple methods have been proposed for performance measure estimation, but the accuracy of 
these methods varies. To comprehensively understand the accuracy and reliability of the previously 
proposed estimation methods, a comprehensive literature review regarding control delay and AOG 
estimation is summarized in Tables 7-1 and 7-2.  Table 7-1 shows the literature review summary 
regarding control delay estimation in terms of methodology, data sources, ground-truth data 
collection, and accuracy. Both traditional methods such as the HCM method and emerging AI 
methods such as KNN have been applied to estimate the control delay at signalized intersections. 
Most studies leveraged traffic data such as volume and speed collected by traffic detectors for 
delay estimation, which is challenging to be collected through detectors directly. Their evaluation 
results show that most proposed methods have a relatively low error. One possible reason is some 
of these studies used simulation for the method validation, which cannot accurately reflect the 
model performance when using field data. The second reason is the number of study intersections 
is small, with only one or two intersections, which did not indicate the robustness and 
transferability of the proposed methods for network-level performance measure estimation.  

A comparison study conducted by (Wang et al., 2016) evaluates the model performance of various 
delay estimation methods. The results show that the accuracy of the four methods is inconsistent, 
with a high standard deviation, and varies across the time periods and locations. Among these 
methods, the most accurate method has an absolute error ranging from 0.8 seconds to 46 seconds, 
and the Absolute Percentage Error (APE) ranging from 0.2% to 29%. In addition, the left-turn 
movement commonly has a higher error than the through movement. 

Table 7-1. Literature Review Summary of Control Delay Estimation 

Referenc
e 

Methods Data Sources 
Ground-
truth Delay 
Collection 

#Inte
sectio
ns 

Data 
Resoluti
on 

Accuracy 

(Bagdatli 
and 
Dokuz, 
2021) 

KNN, SVR, 
RF, XGBoost 

Signal timing 
info, volume, 
queue. 

Manually 
collecting via 
videos 

12 
Cycle-
based 

MAE: 0.8-
2 sec. 
MSE: 1.4-7 
sec. 

(Anusha 
S. P. et al., 
2016) 

Kalman filter 
Signal timing 
info, loop 
detector data 

- Two 
5-
minutes 

RMSE: 
0.2-0.8 sec. 
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(Wang et 
al., 2016) 

Deterministic 
queuing 
model 

Red/green 
duration, cycle 
length, 
saturation flow 
rate, demand 
flow. 

Image 
processing 

Three 
15-
minutes 

Absolute 
error: 3-84 
sec. 
APE: 4%-
94% 

Webster 
model 

Absolute 
error: 3-96 
sec. 
APE: 5%-
94% 

HCM 2000 
model 

Red/green 
duration, cycle 
length, 
saturation flow 
rate, demand 
flow, and 
various factors. 

Absolute 
error: 0.8-
46 sec. 
APE: 1%-
30% 

Adjusted 
HCM 2000 
model 

Absolute 
error: 0.3-
58 sec. 
APE: 2%-
29% 

(Dobrota 
et al., 
2022) 

Incremental 
queue 
accumulation 
(IQA) delay 
model 

High-
resolution 
event-based 
data 

Simulation Two 
Cycle-
based 

MAPE: 
4.3%-
11.2% 

(Saha 
Arpita et 
al., 2017) 

Modified 
HCM method 

Red/green 
duration, cycle 
length, 
saturation flow 
rate, demand 
flow, and 
various factors. 

Manually 
collecting via 
videos 

Seven 
Cycle-
based 

MAPE: 3-
5% 

(Ban et al., 
2009) 

A least-
squares–
based 
algorithm 

Sample vehicle 
trajectories 

Simulation One 
Cycle-
based 

Error rate 
<15% 

(Zheng et 
al., 2013) 

Image 
processing 
algorithm 

Traffic videos 

Manually 
collecting via 
videos and 
simulation 

One 
Cycle-
based 

Error rate: 
7% 

Table 7-2 summarizes the literature regarding AOG estimation, where only one relevant study was 
found. The study conducted by (Gavric et al., 2023) applied a machine-learning method to estimate 
the number of arrival-on-green vehicles using the data collected by stop-bar detectors rather than 
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advance detectors. The data is collected from only one study intersection, and the simulation results 
show the model error is low with an MAE of 1 vehicle and RMSE of 1.2-1.5 vehicles. According 
to the average arrival-on-green vehicles per cycle, 5-10 vehicles, the rough error rate is around 
10%-20%. In addition, this method is specifically proposed for the through movement only rather 
than the left-turn movement.  

Table 7-2. Literature Summary of AOG Estimation 

Reference Methods 
Data 
Sources 

Ground-
truth Delay 
Collection 

#Intesec
tions 

Data 
Resolutio
n 

Accuracy 

(Gavric et 
al., 2023) 

Multigene 
genetic 
programming 

Traffic data 
collected by 
stop-bar 
detectors 

Simulation One 
Cycle-
based 

MAE: 0.9-1 
vehicles; 

RMSE: 1.2-
1.5 vehicles 

7.2.2 File Data Assessment 

To establish the acceptance criteria for estimated performance measures in the PAG region, the 
data collected from over 200 signalized intersections in the PAG region is used to estimate control 
delay and AOG. Three performance metrics are calculated based on the estimated and ground-
truth data and summarized in Tables 7-3 and 7-4. Table 7-3 summarizes the evaluation results for 
control delay estimation of through and left-turn movement using the data collected through the 
MaxView and Miovision systems. The median MAPE of through movements with advance 
detectors at all locations is around 13% with a standard deviation of 4%. Even though the MAPE 
varies by location, the MAPE remains below 20%. The MAPE of through movements with 
advance detectors and left-turn movements is relatively higher, but still lower than 30%. In 
comparison with previous studies, the error of the proposed method for control delay estimation is 
acceptable.  

Table 7-3. Method performance metrics for hourly control delay estimation 

System Movement and Detector 
Performance Metrics 

MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 6s (5s) 9s (7s) 13% (4%) 
Through (Presence Detectors) 17s (9s) 22s (13s) 19% (5%) 
Left-turn (Presence Detectors) 32s (12s) 44s (19s) 23% (4%) 

Miovision 
Through (Advance + Presence 
Detectors) 

6s (5s) 7s (7s) 13% (4%) 

Left-turn (Presence Detectors) 21s (8s) 29s (11s) 20% (5%) 
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Table 7-4 summarizes the evaluation results for AOG ratio estimation of through and left-turn 
movements using the data collected through the MaxView and Miovision systems. The median 
MAPE for through movements with advance detectors is 18% and 16% for the MaxView and 
Miovision systems, respectively. Most locations have a MAPE of lower than 30% for through 
movements with advance detectors. However, left-turn movements and through movements with 
presence detectors have relatively higher errors, and most locations have a MAPE of higher than 
40%.    

Table 7-4. Method performance metrics for hourly AOG ratio estimation  

System Movement and Detector 
Performance Metrics 

MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 9% (2%) 11% (3%) 18% (13%) 
Through (Presence Detectors) 11% (2%) 13% (3%) 41% (15%) 
Left-turn (Presence Detectors) 13% (4%) 16% (4%) 47% (12%) 

Miovision 
Through (Advance + Presence 
Detectors) 

8% (2%) 11% (2%) 16% (14%) 

Left-turn (Presence Detectors) 14% (3%) 18% (4%) 47% (9%) 

In addition to evaluating the method accuracy for hourly performance measures estimation, the 
hourly data is then aggregated into a month for calculating the monthly average hourly 
performance measures, and the method performance is accordingly evaluated. Figure 7-1 shows 
the comparison between the estimated monthly average hourly control delay, using the data 
collected via the MaxView system, and the ground-truth control delay. All data is categorized into 
three groups according to the movement and detector layout for comparison, and the comparison 
results illustrate most of the data aligns closely with the dashed red line, indicating a close match 
between the estimated results and the ground-truth data. Among these three groups, the through 
movements with advance detectors have the highest accuracy, with only a few outliers. However, 
the other two groups with presence detectors have relatively lower accuracy, with more deviating 
significantly from the dashed red line. Figure 7-2 shows the comparison between estimated values, 
using the data collected via the Miovision system, and ground-truth values. Similar to the 
MaxView system, most data points for both through and left-turn movements align closely with 
the dashed red line, indicating that the data collected by the Miovision system can also provide 
accurate and reliable monthly average hourly control delay. In addition, fewer outliers are observed 
for the left-turn movements in the Miovision system than the MaxView system. This difference 
can be attributed to the virtual presence detectors configured in the Miovision system, which have 
a shorter length and are more sensitive to left-turn vehicle arrivals, thereby providing more 
accurate information regarding vehicle arrivals. 
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(a) through movements with 
advance detectors 

(b) through movements with 
presence detectors 

(c) left-turn movements with 
presence detectors 

Figure 7-1. Comparison between estimated and ground-truth monthly average hourly control 
delay using the MaxView system.  

(a) through movements with advance and 
presence detectors 

(b) left-turn movements with presence 
detectors 

Figure 7-2. Comparison between estimated and ground-truth monthly average hourly control 
delay using the Miovision system 

Table 7-5 summarizes the method performance metrics for estimating monthly average hourly 
control delay using the data collected from the MaxView and Miovision systems. In comparison 
to the method performance for hourly control delay estimation, the method error for monthly 
average hourly control delay estimation is relatively lower for the two systems regardless of the 
metric employed. For example, the median MAPE for through movements with advance detectors, 
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through movements with presence detectors, and left-turn movements in the MaxView system are 
9%, 13%, and 18%, respectively, and all are lower than 30%. In the Miovision system, the median 
MAPE for through movements and left-turn movements are 9% and 14%, respectively. Consistent 
with the observations in Figures 1(b) and 2(b), the data collected by the Miovision system 
demonstrates more accurate estimations of left-turn control delay compared to the MaxView 
system.  

Table 7-5. Method performance metrics for monthly average hourly control delay estimation 

System Movement and Detector 
Performance Metrics 

MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 4s (3s) 5s (3s) 9% (4%) 
Through (Presence Detectors) 19s (5s) 12s (8s) 13% (5%) 
Left-turn (Presence Detectors) 18s (5s) 23s (6s) 18% (5%) 

Miovision 
Through (Advance + Presence 
Detectors) 

3s (2s) 4s (3s) 9% (3%) 

Left-turn (Presence Detectors) 11s (6s) 15s (7s) 14% (5%) 

 

(a) through movements with 
advance detectors 

(b) through movements with 
presence detectors 

(c) left-turn movements with 
presence detectors 

Figure 7-3. Comparison between estimated and ground-truth monthly average hourly AOG using 
the MaxView system 

Figure 7-3 illustrates the comparison between the estimated monthly average hourly AOG, using 
the MaxView system, and ground-truth data. For through movements with advance detectors 
configured, most data points closely align with the dashed red line, indicating the estimated values 
match ground-truth values. For the locations with presence detectors, even though most data points 
are located near the dashed red line, more outliers deviate significantly from the dashed red line in 
comparison to the locations with advance detectors. Figure 7-4 compares the estimated monthly 
average hourly AOG, using the data provided by the Miovision system, and the ground-truth values. 
Similar to the results when using the MaxView system, most data points for the through movement 
closely align with the dashed red line, indicating the data collected by the Miovision system can 
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provide accurate monthly average hourly AOG for through movements. For left-turn movements, 
while most data points are close to the dashed red line, numerous outliers deviate considerably 
from the line. 

 

  

(a) through movements with advance and 
presence detectors 

(b) left-turn movements with presence 
detectors 

Figure 7-4. Comparison between estimated and ground-truth monthly average hourly AOG using 
the Miovision system. 

Table 7-6 summarizes the method performance metrics for monthly average hourly AOG ratio 
estimation using the data collected via the MaxView and Miovision systems. In comparison to 
hourly AOG estimation shown in Table 7-4, the monthly average AOG has a significantly lower 
error, especially for through movements. Specifically, for the through movements with advance 
and presence detectors in the MaxView system, the median MAPE drops from 18% and 41% (from 
Table 7-4) to 10% and 24%, respectively. The median MAPE for through movements in the 
Miovision system also decreases from 16% (from Table 7-4) to 7%. However, the method 
performance for the left-turn movements experiences insignificant improvement after aggregating 
the hourly AOG to a monthly level. In addition, the standard deviation of MAPE for the locations 
with presence detectors increases, indicating a higher variability in the estimation accuracy.  
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Table 7-6. Method performance metrics for monthly average hourly AOG estimation 

System Movement and Detector 
Performance Metrics 
MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 6% (4%) 8% (3%) 10% (5%) 
Through (Presence Detectors) 8% (5%) 11% (5%) 24% (27%) 
Left-turn (Presence Detectors) 10% (2%) 15% (3%) 41% (21%) 

Miovision 
Through (Advance + Presence 
Detectors) 

5% (1%) 7% (2%) 7% (6%) 

Left-turn (Presence Detectors) 10% (3%) 14% (4%) 31% (25%) 

7.2.3 Acceptance Criteria 

According to the summary of the relevant literature and data assessment results, the preliminary 
acceptance criteria for different traffic performance measures, traffic movements, detector layouts, 
and systems are developed, as summarized in Tables 7-7 to 7-10. Considering that previous 
relevant studies used few study locations and simulation data for calculating the performance 
metrics, the criteria should be relatively less stringent than the assessment results using the real-
world data collected from an entire region. Therefore, the acceptance criteria are set relatively 
higher than the performance metrics reported in previous studies to ensure the suitability and 
applicability of the criteria for real-world and region-wide applications. 

Table 7-7. Preliminary Acceptance Criteria for Estimated Hourly Control Delay 

System Movement and Detector 
Acceptance Criteria 
MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 10s 15s 20% 
Through (Presence Detectors) 30s 30s 25% 
Left-turn (Presence Detectors) 30s 50s 30% 

Miovision 
Through (Advance + Presence 
Detectors) 

10s 15s 20% 

Left-turn (Presence Detectors) 30s 50s 30% 

Table 7-8. Preliminary Acceptance Criteria for Estimated Hourly AOG Ratio 

System Movement and Detector 
Acceptance Criteria 
MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 15% 15% 30% 
Through (Presence Detectors) 20% 20% 40% 
Left-turn (Presence Detectors) 20% 20% 40% 

Miovision 
Through (Advance + Presence 
Detectors) 

15% 15% 30% 

Left-turn (Presence Detectors) 20% 20% 40% 
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Table 7-9. Preliminary Acceptance Criteria for Estimated Monthly Average Hourly Control 
Delay 

System Movement and Detector 
Acceptance Criteria 
MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 10s 10s 10% 
Through (Presence Detectors) 20s 20s 20% 
Left-turn (Presence Detectors) 25s 25s 25% 

Miovision 
Through (Advance + Presence 
Detectors) 

10s 10s 10% 

Left-turn (Presence Detectors) 25s 25s 25% 

Table 7-10. Preliminary Acceptance Criteria for Estimated Monthly Average AOG Ratio 

System Movement and Detector 
Acceptance Criteria 
MAE RMSE MAPE 

MaxView 
Through (Advance Detectors) 10% 10% 15% 
Through (Presence Detectors) 15% 15% 30% 
Left-turn (Presence Detectors) 15% 15% 30% 

Miovision 
Through (Advance + Presence 
Detectors) 

10% 10% 15% 

Left-turn (Presence Detectors) 15% 15% 30% 

7.2.4 Validation Result Summary 

According to the developed acceptable criteria, the performance measures of the estimated hourly 
and monthly average hourly control delay for through and left-turn movements meet all the 
acceptance criteria, which would be used to control the quality of any other data. This indicates 
that the estimated control delay values are within the acceptable error range for accurate and 
reliable performance assessment and will be used for further application. For AOG ratio estimation, 
the through movements with the advance detector have a lower error in both hourly and monthly 
average hourly estimation than the three acceptance criteria. However, most left-turn locations and 
the through locations with presence detectors in both systems have a higher MAPE in hourly and 
monthly average hourly estimation than the acceptance criteria. In terms of MAE and RMSE, most 
locations with presence detectors can meet the acceptance criteria, because these locations usually 
have a lower priority in signal coordination, leading to a low AOG ratio. Therefore, the estimated 
control delay for both through and left-turn movements is considered acceptable and can be 
reliably used for real-time and long-term traffic studies. The estimated AOG ratio for through 
movements with advance detectors has an accepted error, but most locations with presence 
detectors have an error exceeding the acceptable criteria. When applying the estimated AOG ratio 
for traffic studies, the locations with presence detectors might provide less reliable results, which 
require further analysis and evaluation.  
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In addition to calculating control delay and AOG ratio, the Wejo data has been used to extract 
traffic signal split failure in previous studies. In this project, the split failure is not estimated using 
the event-based data due to the lack of reliable ground-truth data, so the associated acceptance 
criteria have not been developed. Even though the split failure has been extracted from the Wejo 
data using the method proposed by a previous study (E. Saldivar-Carranza et al., 2021a), the 
relationship between Wejo-based split failure and sensor-based split failure did not show a strong 
correlation regardless of the sample size of Wejo data due to a large amount of zero split failure. 
Consequently, the Wejo data cannot serve as a reliable source for determining ground-truth data 
for the split failure estimation method. Therefore, the estimation of split failure based on Wejo data 
is not feasible in this project, and alternative approaches should be explored for obtaining accurate 
and reliable ground-truth split failure data. 
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CHAPTER 8: REGION-WIDE TRAFFIC 
MOBILITY/RELIABILITY PERFORMANCE ESTIMATION    

Based on the estimation method developed in previous tasks, this task will focus on estimating and 
analyzing traffic mobility/reliability performance measures including control delay and AoG at 
signalized intersections using event-based data from MaxView and Miovision within the PAG 
region, subject to QA/QC. The study intersections selected will depend on the communication over 
the regional communication network, which includes the MaxView and Miovision systems. 

8.1 DATA COLLECTION 

The estimation of performance measures heavily relies on event-based data collected through the 
Miovision and MaxView systems. The availability of event-based is dependent on the controller’s 
communication quality. For example, poor communication quality can lead to missing data 
whereas traffic controllers with reliable communication can provide high-quality event-based data.  

Figure 8-1 illustrates the number of intersections with event-based data available daily throughout 
2021.  On average, approximately 300 signalized intersections in the PAG region had event-based 
data available. The Miovision system demonstrates reliable and robust data quality, with 100 out 
of 110 signal controllers consistently providing event-based data on most days. Only a few days 
in June experienced some missing data. The MaxView system had event-based data available for 
around 200 intersections out of a total of 500 intersections, with a slight variation observed across 
different days of the year.  Data missing during November was because the UA team did not back 
up the data for those specific days and was not due to communication issues. 

 

Figure 8-1. The number of intersections with available event-based data 
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8.2 REGION-WIDE CONTROL DELAY ESTIMATION AND ANALYSIS 

8.2.1 Hourly Control Delay 

The event-based data is utilized to estimate the left-turn and through control delay at all study 
intersections on a 24/7 basis. Taking Speedway Boulevard & Euclid Avenue as an example, Figure 
8-2 shows three days of estimated left-turn and through control delay for each of the four road 
directions. This estimated control delay shows a logical and clear traffic pattern, with a low delay 
during nighttime and a high delay during peak periods. In addition, four directions have a left-turn 
delay significantly higher than through delay, which is consistent with real-world observations.  

These findings are consistent with existing knowledge in the field, indicating that the estimated 
control delay serves as a reliable and accurate measure for quantifying traffic patterns and 
conditions.  

 

Figure 8-2. Estimated hourly control delay at Speedway Boulevard & Euclid Avenue 

The estimated control delay obtained from all study intersections is used to analyze the distribution 
of delay by the hour of the day, as depicted in Figure 8-3. Both left-turn and through delay show 
a similar temporal trend. Before 5 a.m., the distribution displays relatively low median values and 
variance, which implies that the control delay is generally low. The distributions during the 
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daytime are similar, which is likely because traffic patterns in the region are relatively constant 
throughout the daytime hours. After 7 a.m., the median and variance of the distributions increase, 
indicating a rise in control delay that varies across different locations. Comparing left-turn delay 
and through delay, left-turn movements consistently experience higher delays than through 
movements throughout the entire 24-hour period. The control delay for most through movements 
remains below 50 seconds, while most left-turn movements exhibit delays exceeding 75 seconds 
during daytime hours.   

 

Figure 8-3. Estimated control delay distribution by hour of the day 

In addition to temporally analyzing the estimated control delay, Figure 8-4 illustrates the spatial 
distribution of control delay at different hours. Each color in the figure represents the control delay 
for a specific traffic movement in a particular road direction, while the radius of the circle indicates 
the total control delay for both through and left-turn movements at a given signalized intersection. 
Figure 8-4 (a) shows the spatial distribution at 1 am, during which most intersections exhibit low 
delay due to light traffic volume. However, there are still some intersections experiencing 
relatively high delay, primarily attributed to high left-turn delay. At 8 a.m., numerous locations, 
particularly along major corridors like Speedway Blvd. and Ajo Way, have a high delay, as shown 
in Figure 8-4(b). Figure 8-4(c) demonstrates the spatial distribution at 5 p.m., which exhibits a 
similar pattern to 8 a.m.  
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(a) Estimated control delay at 1a.m. 

Figure 8-4. Spatial distribution of estimated control delay on Sep. 14, 2021 
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(c) estimated control delay at 8 a.m. 
Figure 8-5. Spatial distribution of estimated control delay on Sep. 14, 2021 
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(c) estimated control delay at 5 p.m. 

Figure 8-6. Spatial distribution of estimated control delay on Sep. 14, 2021 
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8.2.2 Monthly Average Hourly Control Delay 

The estimated hourly control delay data is further aggregated to a monthly level to estimate the 
average hourly control delay for each month. Figure 8-5 provides an example using data collected 
from Speedway Blvd. & Euclid Ave. in September 2021. The monthly average estimated hourly 
control delay exhibits clear traffic patterns for both left-turn and through traffic. Although the 
aggregated data follows a similar pattern as the hourly control delay, it presents a smoother trend 
due to the averaging process. According to the aggregated control delay, some directions have clear 
peak hours; for example, NB has its a.m. peak at 8 a.m. and PM peak from 4-6 p.m. In contrast, 
some directions exhibit similar values of hourly control delay throughout the daytime, such as the 
EB.  

 

Figure 8-7. Monthly average hourly control delay at Speedway Blvd. & Euclid Ave. in 
September 2021 

In addition to using September’s data, the aggregated control delay from 12 months is utilized to 
depict the variations in traffic conditions across different months. As shown in Figure 8-6, the 
heatmaps illustrate the monthly average hourly control delay at 24 hours and 12 months for 
thorough and left-turn traffic in four road directions at Speedway Blvd. & Euclid Ave. In terms of 
the month dimension, the control delay during June and July is lower compared to other months, 
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particularly during daytime hours and peak periods. This decrease in delay can be attributed to 
lighter traffic volumes experienced during the summer break. The heatmaps provide valuable 
insights into the seasonal fluctuations in traffic conditions and highlight the impact of factors such 
as vacation periods on congestion levels. 

 

(a) Southbound 

 

(b) Northbound 

Figure 8-8. Heatmap of monthly average estimated control delay at Speedway Blvd. & Euclid 
Ave. 
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(c) Eastbound 

 

(d) Westbound 

Figure 8-9. Heatmap of monthly average estimated control delay at Speedway Blvd. & Euclid 
Ave. 
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8.3 REGION-WIDE AOG RATIO ESTIMATION AND ANALYSIS 

8.3.1 Hourly AoG Ratio 

The event-based data obtained from the MaxView and Miovision systems is utilized to estimate 
the 24/7 AoG ratio at all intersections within the PAG region. Figure 8-7 takes Speedway Blvd & 
Euclid Ave. as one example to illustrate the temporal trend of AoG ratio specifically for through 
movements. The reason that the AoG ratio is estimated only for through movements is that some 
left-turn movements do not meet the acceptance criteria established in the previous section of the 
analysis. All directions except SB have a clear and similar pattern with low estimated AoG in peak 
hours and high estimated AoG at nighttime. The specific peak hours vary across directions. For 
instance, the EB direction peak hours span the entire daytime, while the NB direction peak hours 
occur from 3-6 p.m. In the case of the SB direction, there is no clear pattern due to the approach 
segment being a minor road with lower traffic volume and random vehicle arrivals. 

 

Figure 8-10. Estimated hourly AoG ratio at Speedway Blvd. & Euclid Ave. 

Furthermore, the estimated AoG ratio obtained from all study intersections is utilized to generate 
the density distribution by the hour of the day, as shown in Figure 8-8. During nighttime hours, 
the estimated AoG ratio tends to be relatively high, with the median values of these distributions 
exceeding 75%. This indicates light traffic conditions during these periods, with vehicles 
experiencing less delay at signalized intersections. In addition, another distribution peak with a 
mean of 100% is observed during nighttime, indicating that some locations experience free-flow 



   

173 

 

traffic conditions during late night and early morning hours, where all vehicles can smoothly 
proceed through intersections without stops. However, during daytime hours, the median values 
of the distribution decrease, suggesting increased congestion and higher likelihood to stop at 
signalized intersections. The variance of the distribution is also higher during daytime, indicating 
greater variability in the AoG ratio at different intersections and during peak traffic periods. 

 

Figure 8-11. Estimated AoG ratio distribution by hour of the day 

In addition to analyzing the estimated AoG ratio in a temporal dimension, Figure 8-9 illustrates 
the spatial distribution at different hours on Sept. 14, 2021. At midnight, as shown in Figure 8-9 
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(a), most intersections have a relatively high estimated AoG ratio. Some intersections show a circle 
with a small radius, which does not mean these locations have a low AoG ratio, but rather that 
these locations such as intersections on Ajo Way only have one or two road directions with 
available event-based data or free-flow speed data caused by a very low volume.  Figures 8-9(b) 
and 8-9(c) illustrate the spatial distribution of the AoG ratio during the morning and afternoon peak 
hours, respectively. These peak hours exhibit lower AoG ratios compared to the nighttime, 
indicating more traffic congestion and a higher likelihood that vehicles must stop at signalized 
intersections. 
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(a) AoG ratio at 1am 

Figure 8-12. Spatial distribution of AoG ratio on Sept. 14, 2021 
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(b) AoG ratio at 7 a.m. 

Figure 8-13. Spatial distribution of AoG ratio on Sept. 14, 2021 
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(c) AoG ratio at 5 p.m. 

Figure 8-14. Spatial distribution of AoG ratio on Sept. 14, 2021 

8.3.2 Monthly Average Hourly AOG Ratio 

The estimated hourly AoG ratio is aggregated for each month to estimate the monthly average 
hourly AoG ratio. Figure 8-10 illustrates the temporal trend of the monthly average estimated 
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hourly AoG ratio specifically at Speedway Blvd. & Euclid Ave. in Sept. 2021. Comparing the 
monthly average estimated hourly AoG ratio in Figure 8-10 to the estimated hourly AoG ratio for 
the 3 days in Figure 8-7, it is evident that both display a similar pattern but with a smoother trend 
at the monthly level. The aggregation process provides a clearer and more consolidated view of 
the overall traffic conditions and the average level of congestion experienced at the intersection. 

 

Figure 8-15.  Monthly average estimated hourly AoG ratio at Speedway Blvd. & Euclid Ave. in 
Sept. 2021 

Furthermore, the monthly average estimated AoG ratio at Speedway Blvd & Euclid Ave. is 
calculated for each of the 12 months to visualize the traffic conditions throughout the year. Figure 
8-11 shows the aggregated AoG ratios, revealing consistent patterns for many times of the day 
across different months. However, the AoG ratio from May to July is higher than in other months, 
especially during the afternoon peak, which can be attributed to the overall lower traffic volume 
during summer break.  
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(a) Southbound 

 

(b) Northbound 

Figure 8-16. Heatmap of monthly average estimated AoG ratio at Speedway Blvd. & Euclid 
Ave. 
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(c) Eastbound 

 

(d) Westbound 

Figure 8-17. Heatmap of monthly average estimated AoG ratio at Speedway Blvd. & Euclid 
Ave. 
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APPENDIX A: DATA COLLECTION DESCRIPTION 

Table A-1: The Summary of Data Collection Method  

Data Source Data Collection 
Method  

Requirements  Collection Code 
File Name  

Code 
Description  

Event-based data  Query from 
MaxView 
database  

VPN account &  
Database 
account  

Read Event-
based data. R  

Read raw events 
of detection, 
signal, and 
communication  

Event-based data  Using an API API key  Miovision_API.
R 

Download the 
events from 
cloud server  

Volume data  Using an API  API key  Miovision_API.
R 

Download the 
TMC from cloud 
server 

AoG data  Request the data 
to Miovision or 
manually 
download from 
the TrafficLink 

TrafficLink 
account  

/  /  

Simple delay 
data  

Request the data 
to Miovision or 
manually 
download from 
the TrafficLink 

TrafficLink 
account 

/  /  

Split failure Request the data 
to Miovision or 
manually 
download from 
the TrafficLink 

TrafficLink 
account 

/ /  

Wejo data  Provided by 
PAG  

/  /  /  

Intersection 
movement type  

Manually 
collected from 
MaxView 
interface and 
Google Earth 

VPN account & 
MaxView 
account  

/  /  

Intersection 
layout  

Manually 
collected from 
Google Earth 
and MaxView 
interface  

VPN account & 
MaxView 
account  

/  /  

Speed limit data Manually 
collected from 
Google Earth 

/ / / 
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APPENDIX B: MAML MODEL DESCRIPTION FOR ESTIMATING AOG AND DELAY 
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